Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Timing is critical as launch windows approach

06.09.2002

There will be greater tension than usual among engineers and scientists at Europe`s spaceport at Kourou, French Guiana, in January 2003, as they gather to see ESA`s comet-chasing spacecraft Rosetta departing on its long journey. If it is to keep its rendezvous with Comet Wirtanen in 2012, Rosetta must lift off on its Ariane-5 launcher no sooner than 03:40 CET on 13 January 2003 and no later than the end of that month.

This span of suitable dates is called a launch window. For interplanetary missions, such windows are much stricter than for satellites orbiting the Earth. To send a spacecraft from the ever-moving Earth to a planet or a comet following another course through space is highly complicated. Timing is everything. Before it can meet Comet Wirtanen, far out in space, Rosetta first has a series of planetary appointments to keep. With each close fly-by of a planet, it receives an energy boost because of the planet`s gravitational pull. The spacecraft is due to pass by Mars in August 2005, then do high-speed fly-bys of the Earth in November 2005 and November 2007.

In a way, Rosetta is like a passenger on a train journey involving several changes. Unless the first train leaves right on time, with the spacecraft on-board, it will miss the later connections. If it departed after 31 January 2003, Rosetta would be unable to reach the target comet.

"The cosmic clock of the Solar System fixed our launch date when Comet Wirtanen was selected as Rosetta`s target ten years ago," comments John Ellwood, project manager for the mission. "Although there are risks in a precise, rather short launch window, it`s had the advantage that everyone concerned knew there was no room for discussion - they had to be ready."

Besides the restricted span of launch dates, there is also a tight limit on the time of day at which Rosetta can leave Earth. Because the Earth rotates, Kourou must be correctly positioned in relation to the direction in which the spacecraft must head off, on the first leg of its interplanetary journey. The daily window is about 20 minutes, during which time the Earth rotates through 5 degrees.

In May 2003, similar concerns about a launch window will preoccupy the engineers and scientists of ESA`s Mars Express mission, at the Baikonur Cosmodrome in Kazakhstan, in the former Soviet Union. There the launcher will be a Soyuz-Fregat rocket. Scientists have always planned to use the especially favourable relative positions of Earth and Mars occurring in mid-2003 (and not repeated until 2020) for Mars Express to have an express flight to the Red Planet.

Opportunities to fly to Mars occur every 26 months, but the travelling distance varies a lot because the orbit of Mars is elliptical, that is, egg-shaped. The 2003 opportunity coincides with a time when the Earth is about to overtake Mars, as the planets orbit around the Sun, and when Mars happens to be in the closest sector of its orbit. The Mars Express launch window opens at 20:41 CET on 23 May 2003 and closes at 17:47 CET on 21 June 2003.

Almost nothing in space stands still with respect to Earth, so ESA`s scientists will have to be careful that their craft, Rosetta, leaves Earth at the right time and in the right way. The spacecraft has a long trip ahead.

Monica Talevi | AlphaGalileo
Further information:
http://www.esa.int

More articles from Physics and Astronomy:

nachricht Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication
16.07.2018 | Chinese Academy of Sciences Headquarters

nachricht Theorists publish highest-precision prediction of muon magnetic anomaly
16.07.2018 | DOE/Brookhaven National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication

16.07.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>