Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biggest ever Gamma Ray search starts in Namibia

28.08.2002


The world’s most sensitive Gamma Ray telescopes are being inaugurated in Namibia (in Southwest Africa) on September 3rd. The High Energy Stereoscopic System (H.E.S.S.), a European/African collaboration in which the UK is a partner, will look for Gamma Rays produced by the most energetic particles in the Universe. The array initially consists of four telescopes, the first of which will become operational next week. This one telescope alone is more sensitive than any other existing ground-based array or telescope working in this particular area of the electromagnetic spectrum.



Once all four telescopes are operational in late 2003, researchers from the University of Durham will use H.E.S.S. to investigate a range of extreme cosmic environments such as the supernova remnants formed when a star dies. A major goal is to see if these are a source of cosmic rays - charged particles that constantly bombard the Earth from space. The origin of cosmic rays is difficult to determine as they are influenced by the magnetic field of our Galaxy. However, the Gamma Rays they emit travel in a straight line, so they may reveal the primary source of the cosmic rays. H.E.S.S. will also be probing the structure of pulsars (rapidly rotating stars formed when a massive star explodes at the end of its life, which emit pulses across the range of the electromagnetic spectrum) and active galactic nuclei to find the source of their energy.

Dr Paula Chadwick, of the Durham team, explains: "H.E.S.S. is set to give us unique insights into some of the most extreme environments in the universe. We have some expectations about what we will be able learn more about - supernova remnants, active galaxies and so on - but experience tells us that when you improve the sensitivity of your telescope, you see things you never expected as well. It`s going to be very exciting!"


When Gamma Rays are absorbed by the Earth’s atmosphere, pairs of electrons and positrons are created and emit tiny flashes of light in a process known as Cherenkov radiation. Telescopes such as H.E.S.S can detect these tiny flashes of light. By using the Earth’s atmosphere as part of the detector, the telescopes have much greater sensitivity than an equivalent space based device, and can detect far fainter Gamma Ray sources than previously possible.

Gamma rays are usually produced by particles moving very rapidly. The study of Gamma Rays enables astronomers to learn more about systems that accelerate these particles, such as active galactic nuclei where supermassive black holes produce jets of particles travelling near the speed of light. These are strong and highly variable sources of gamma rays. Gamma Rays can also be produced by the annihilation of massive particles that may be the source of the ‘missing mass’ in the universe.

The University of Durham’ s role in the design and manufacture of HESS has been in calibrating the camera that will record the Cherenkov radiation and in developing systems that will measure the atmospheric conditions. This is critically important as variations in the atmosphere, such as cloud cover, can dramatically reduce the amount of light reaching the telescopes. The Durham scientists are now working on various refinements to calibration systems, and a more efficient mirror making technique that they hope to use when the array is extended from the current 4 telescopes to the planned 12 or 16.

Namibia is an excellent site scientifically, one of the best in the world for ground-based optical astronomy and with ideal atmospheric conditions for the techniques used by H.E.S.S. However, practically it has represented a huge challenge with limited road access to the site and water, power and computing connections having to be put in place specially.

Julia Maddock | alfa
Further information:
http://www.mpi-hd.mpg.de/hfm/HESS/HESS.html

More articles from Physics and Astronomy:

nachricht Newfound superconductor material could be the 'silicon of quantum computers'
16.08.2019 | National Institute of Standards and Technology (NIST)

nachricht Moon glows brighter than sun in images from NASA's Fermi
16.08.2019 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A miniature stretchable pump for the next generation of soft robots

Soft robots have a distinct advantage over their rigid forebears: they can adapt to complex environments, handle fragile objects and interact safely with humans. Made from silicone, rubber or other stretchable polymers, they are ideal for use in rehabilitation exoskeletons and robotic clothing. Soft bio-inspired robots could one day be deployed to explore remote or dangerous environments.

Most soft robots are actuated by rigid, noisy pumps that push fluids into the machines' moving parts. Because they are connected to these bulky pumps by tubes,...

Im Focus: Vehicle Emissions: New sensor technology to improve air quality in cities

Researchers at TU Graz are working together with European partners on new possibilities of measuring vehicle emissions.

Today, air pollution is one of the biggest challenges facing European cities. As part of the Horizon 2020 research project CARES (City Air Remote Emission...

Im Focus: Self healing robots that "feel pain"

Over the next three years, researchers from the Vrije Universiteit Brussel, University of Cambridge, École Supérieure de Physique et de Chimie Industrielles de la ville de Paris (ESPCI-Paris) and Empa will be working together with the Dutch Polymer manufacturer SupraPolix on the next generation of robots: (soft) robots that ‘feel pain’ and heal themselves. The partners can count on 3 million Euro in support from the European Commission.

Soon robots will not only be found in factories and laboratories, but will be assisting us in our immediate environment. They will help us in the household, to...

Im Focus: Scientists create the world's thinnest gold

Scientists at the University of Leeds have created a new form of gold which is just two atoms thick - the thinnest unsupported gold ever created.

The researchers measured the thickness of the gold to be 0.47 nanometres - that is one million times thinner than a human finger nail. The material is regarded...

Im Focus: Study on attosecond timescale casts new light on electron dynamics in transition metals

An international team of scientists involving the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) in Hamburg has unraveled the light-induced electron-localization dynamics in transition metals at the attosecond timescale. The team investigated for the first time the many-body electron dynamics in transition metals before thermalization sets in. Their work has now appeared in Nature Physics.

The researchers from ETH Zurich (Switzerland), the MPSD (Germany), the Center for Computational Sciences of University of Tsukuba (Japan) and the Center for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The power of thought – the key to success: CYBATHLON BCI Series 2019

16.08.2019 | Event News

4th Hybrid Materials and Structures 2020 28 - 29 April 2020, Karlsruhe, Germany

14.08.2019 | Event News

What will the digital city of the future look like? City Science Summit on 1st and 2nd October 2019 in Hamburg

12.08.2019 | Event News

 
Latest News

Working out why plants get sick

16.08.2019 | Life Sciences

Newfound superconductor material could be the 'silicon of quantum computers'

16.08.2019 | Physics and Astronomy

Stanford develops wireless sensors that stick to the skin to track our health

16.08.2019 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>