Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An exciting new state for excitons

26.08.2002


A Bose-Einstein condensate, a form of matter heretofore only observed in atoms chilled to less than a millionth of a degree above absolute zero, may now have been observed at temperatures in excess of one degree Kelvin in excitons, the bound pairs of electrons and holes that enable semiconductors to function as electronic devices.

Researchers with the Lawrence Berkeley National Laboratory (Berkeley Lab), in collaboration with a scientist at the University of California’s Santa Barbara campus, have reported the observation of excitons that display a macroscopically ordered electronic state which indicates they have formed a new exciton condensate. The observation also holds potential for ultrafast digital logic elements and quantum computing devices.

"The excitons were expected to form a quantum liquid or even a Bose-Einstein condensate, this state had been predicted in theory since the 1960s, but the macroscopically ordered exciton state that we found is a new state that was not predicted," says Leonid Butov, a solid state physicist who holds a joint appointment with Berkeley Lab’s Materials Sciences Division (MSD) and with the Institute of Solid State Physics at the Russian Academy of Sciences.



Just as the Nobel prize-winning creation of Bose-Einstein condensate atoms offered scientists a new look into the hidden world of quantum mechanics, so, too, would the creation of Bose-Einstein condensate excitons provide scientists with new possibilities for observing and manipulating quantum properties.

The creation of a new exciton condensate was reported in the August 15, 2002 issue of the journal Nature, in a paper co-authored by Butov, Arthur Gossard of UC Santa Barbara’s Department of Electrical and Computer Engineering, and Daniel Chemla, director of Berkeley Lab’s Advanced Light Source.

The new exciton condensate was observed at Berkeley Lab using photoluminescence on samples composed of the semiconductors gallium arsenide and aluminum gallium arsenide. The semiconductor samples were of extremely high quality and were prepared by Gossard in Santa Barbara.

The observations were made by shining laser light on specially designed nano-sized structures called quantum wells which were grown at the interface between the two semiconductors. These quantum wells allow electrons and electron holes (vacant energy spaces that are positively-charged) to move freely through the two dimensions parallel to the quantum well plane, but not through the perpendicular dimension. Under the right energy conditions, application of an electrical field in this perpendicular direction will bind an electron in one quantum well to a hole in another across a potential barrier to create a relatively stable exciton.

"An exciton functions as a quasi-particle, akin to a hydrogen atom," says Butov, "which means that by reducing temperature or increasing density, it is a candidate to form a Bose-Einstein condensate."

Trapped in the quantum wells, their movement restricted to two-dimensions, the excitons created by Butov and his colleagues condensed at the bottom of the wells as their temperature dropped. Because the mass of these excitons was so much smaller than that of the atoms used to form atomic Bose-Einstein condensates, the critical temperature at which condensation occurred, about one degree Kelvin (-272 degrees Celsius or -459 degrees Fahrenheit) was much higher. By comparison, to create the first atomic Bose-Einstein condensates back in 1995, researchers at the University of Colorado had the daunting task of chilling a ball of rubidium atoms to as close to absolute zero as the laws of physics allow.

Under photoluminescence, the macroscopically ordered exciton state that Butov and his colleagues observed appeared against a black background as a bright ring that had been fragmented into a chain of circular spots extending out to one millimeter in circumference.

"The existence of this periodic ordering shows that the exciton state formed in the ring has a coherence on a macroscopic length of scale," says Butov. "This coherence is a signature of a condensate. The next step is to do a coherence spectroscopy study, particularly at lower temperatures, that will verify the properties of this new state."

Berkeley Lab is a U.S. Department of Energy national laboratory located in Berkeley, California. It conducts unclassified scientific research and is managed by the University of California. Visit our Website at www.lbl.gov/.

For more information contact Leonid Butov at (510)486-7475
or via e-mail at LVButov@lbl.gov

Lynn Yarris | EurekAlert!

More articles from Physics and Astronomy:

nachricht Beyond the brim, Sombrero Galaxy's halo suggests turbulent past
21.02.2020 | NASA/Goddard Space Flight Center

nachricht 10,000 times faster calculations of many-body quantum dynamics possible
21.02.2020 | Christian-Albrechts-Universität zu Kiel

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

NUI Galway highlights reproductive flexibility in hydractinia, a Galway bay jellyfish

24.02.2020 | Life Sciences

KIST researchers develop high-capacity EV battery materials that double driving range

24.02.2020 | Materials Sciences

How earthquakes deform gravity

24.02.2020 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>