Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hiding in the noise and chaos

13.08.2002


Communicating with light polarization

A new and novel way of communicating over fiber optics is being developed by physicists supported by the Office of Naval Research. Rather than using the amplitude and frequency of electromagnetic waves, they’re using the polarization of the wave to carry the signal. Such a method offers a novel and elegant method of secure communication over fiber optic lines.

Electromagnetic waves, like light and radio waves, have amplitude (wave height), frequency (how often the wave crests each second), and polarization (the plane in which the wave moves). Changes in amplitude and frequency have long been used to carry information (AM radio uses changes in the amplitude of radio waves; FM radio uses changes in their frequency), but polarization has not been so thoroughly explored.



ONR-supported physicists Gregory VanWiggeren (Georgia Tech) and Rajarshi Roy (University of Maryland) have demonstrated an ingenious method to communicate through fiber optics by using dynamically fluctuating states of light polarization. Unlike previous methods, the state of the light’s polarization is not directly used to encode data. Instead the message (encoded as binary data of the sort used by digital systems) modulates a special kind of laser light. Van Wiggeren and Roy used an erbium-doped fiber ring laser. The erbium amplifies the optical signal, and the ring laser transmits the message. In a ring laser the coherent laser light moves in a ring-shaped path, but the light can also be split from the ring to be transmitted through a fiber optic cable.

The nonlinearities of the optic fiber produce dynamical chaotic variations in the polarization, and the signal is input as a modulation of this naturally occurring chaos. The signal can be kept small relative to the background light amplitude. The light beam is then split, with part of it going through a communications channel to a receiver. The receiver breaks the transmitted signal into two parts. One of these is delayed by about 239 nanoseconds, the time it takes the signal to circulate once around the ring laser. The light received directly is compared, by measuring polarizations, to the time delayed light. Then the chaotic variations are subtracted, which leaves only the signal behind. Variations in stress and temperature on the communications would be equally subtracted out.

"This is quite a clever method, which hides the signal in noise," says ONR science officer Mike Shlesinger, who oversees the research. "It provides a definite advantage over direct encoding of polarization, leaving an eavesdropper only chaotic static, and no means to extract the signal."


###
For more information on the technology, or to interview Mike Shlesinger and his researchers, please contact John Petrik or Gail Cleere at 703-696-5031, or email petrikj@onr.navy.mil or cleereg@onr.navy.mil


Gail S. Cleere | EurekAlert!
Further information:
http://www.onr.navy.mil/

More articles from Physics and Astronomy:

nachricht UNH scientists help provide first-ever views of elusive energy explosion
16.11.2018 | University of New Hampshire

nachricht NASA keeps watch over space explosions
16.11.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

New materials: Growing polymer pelts

19.11.2018 | Materials Sciences

Earthquake researchers finalists for supercomputing prize

19.11.2018 | Information Technology

Controlling organ growth with light

19.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>