Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Late Afternoon at Taruntius

09.08.2002


Amazingly Sharp VLT Image of Lunar Landscape


A small area of the lunar surface, on the rim of the 56-km crater Taruntius
© European Southern Observatory



Thirty-three years after the first manned landing on the Moon, the ESO Very Large Telescope (VLT) has obtained what may be the sharpest image of the lunar surface ever recorded from the ground. It was made with the NAOS-CONICA (NACO) adaptive optics camera mounted on the ESO VLT 8.2-m YEPUN telescope at the Paranal Observatory.

The photo (ESO PR Photo 19a/02) shows an area about 700 km from the Apollo XI landing site. The location is in the Eastern hemisphere, just North of the lunar equator, and right between two of the major "seas", Mare Tranquillitatis (Sea of Tranquillity) and Mare Foecunditatis (Sea of Fertility).


The field-of-view measures about 60 x 45 km2 (taking into account the foreshortening because of the viewing angle), with part of a sunlit, 10-km wide crater named Cameron [1] surrounded by a comparatively level terrain, bordered by some hills and, not least, with an incredible number of smaller craters.

The site of this NACO photo is situated at the rim of an older, rather eroded 56-km crater, Taruntius [1]. A small part of the multiple walls of that crater are seen in the upper right corner and also to the left of the bottom centre of PR Photo 19a/02. The centre of Taruntius is near the lower right corner of the photo. The rather flat terrain to the left in the photo corresponds to an "opening" in the crater walls.

At the time of the exposure, the Sun was approximately 7deg above the Western horizon to the left [2], and the shadows are therefore quite prominent, approx. 8 times longer than the elevation of the corresponding peaks and hills.

The nominal image sharpness is 0.07 arcsec, or about 130 metres on the lunar surface (in the N-S direction). Elevation differences of a few tens of metres only are therefore visible by the shadows they cast. The VLT image represents what an astronaut (with normal eye acuity of 1 arcmin) would see from 400 km above the surface.

Testing the NAOS-CONICA instrument

This splendid VLT image is a by-product of the ongoing, thorough testing of the NAOS-CONICA (NACO) Adaptive Optics facility, recently installed at the 8.2-m YEPUN telescope, the fourth unit of the Very Large Telescope (VLT) at the ESO Paranal Observatory. This major astronomical instrument has already delivered other impressive views of the Universe, cf. ESO PR 25/01 and ESO PR Photos 04a-c/02.

Normally, NACO functions by "locking" on a point-like guide star, correcting the image smearing caused in the turbulent terrestrial atmophere by measuring the deformation of the recorded image of that star.

However, in the morning of April 30, 2002, shortly before sunrise, the astronomers and engineers working with NACO decided to do a test of wavefront sensing on an extended celestial object. For this, the giant telescope was turned towards the Moon, at that moment seen in the southern constellation of Ophiuchus, high above the western horizon at Paranal [2].

Guiding the advanced instrument on a sunlit lunar peak in the area between Mare Tranquillitatis and Mare Foecunditatis, a short exposure (0.22 seconds) was made through a narrow-band near-infrared filter (at wavelength 2.3 micron), with the adaptive optics (AO) activated in closed-loop mode. The telescope was set to track on that lunar mountain and the flexible AO mirror in NACO superbly "refocussed" the 25 x 25 arcsec2 field-of-view.

Although the atmosphere above Paranal was rather turbulent that morning - the nominal seeing was measured as 1.5 arcsec - and despite the use of an extended feature for the guiding, the NACO adaptive optics compensation achieved nearly theoretical image sharpness, about 0.068 arcsec for this waveband.

Images of other areas on the lunar surface may be attempted in the future with the VLT and NACO.


Notes

[1]: The lunar crater Taruntius (lunar co-ordinates: 5.6deg N; 46.5deg E) was named in 1935 by the International Astronomical Union (IAU) after the Roman philosopher Lucius Firmanus Taruntius (? - 86 B.C.). It measures about 56 km across. The 10-km crater Cameron (6.2deg N; 45.9deg E) was named by the IAU in 1972 after the American astronomer Robert Curry Cameron (1925 - 1972). Names of surface features on planets and their natural satellites, including the Earth`s Moon, are allocated by the "IAU Working Group for Planetary System Nomenclature" and published on the web in the "Gazetteer of Planetary Nomenclature".

[2]: The NACO image was exposed on April 30, 2002, at 09:42 hrs UT. The geometrical circumstances of this observation were the following: the Moon was located at (Azimuth Az = 266deg; Elevation h = +62deg) in the sky above the VLT at the Paranal Observatory; the Earth (Paranal) was located at (Az = 263deg; h = +50deg) and the Sun at (Az = 268deg; h = +7deg) in the lunar sky above the Cameron crater. The distance from Paranal to the Moon was about 370,000 km.

Richard West | alfa
Further information:
http://www.eso.org/outreach/press-rel/pr-2002/phot-19-02.html

More articles from Physics and Astronomy:

nachricht Electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor
11.12.2018 | Science China Press

nachricht Physicists edge closer to controlling chemical reactions
11.12.2018 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Innovative Infrared heat reduces energy consumption in coating packaging for food

12.12.2018 | Trade Fair News

New Foldable Drone Flies through Narrow Holes in Rescue Missions

12.12.2018 | Information Technology

Obtaining polyester from plant oil

12.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>