Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Late Afternoon at Taruntius

09.08.2002


Amazingly Sharp VLT Image of Lunar Landscape


A small area of the lunar surface, on the rim of the 56-km crater Taruntius
© European Southern Observatory



Thirty-three years after the first manned landing on the Moon, the ESO Very Large Telescope (VLT) has obtained what may be the sharpest image of the lunar surface ever recorded from the ground. It was made with the NAOS-CONICA (NACO) adaptive optics camera mounted on the ESO VLT 8.2-m YEPUN telescope at the Paranal Observatory.

The photo (ESO PR Photo 19a/02) shows an area about 700 km from the Apollo XI landing site. The location is in the Eastern hemisphere, just North of the lunar equator, and right between two of the major "seas", Mare Tranquillitatis (Sea of Tranquillity) and Mare Foecunditatis (Sea of Fertility).


The field-of-view measures about 60 x 45 km2 (taking into account the foreshortening because of the viewing angle), with part of a sunlit, 10-km wide crater named Cameron [1] surrounded by a comparatively level terrain, bordered by some hills and, not least, with an incredible number of smaller craters.

The site of this NACO photo is situated at the rim of an older, rather eroded 56-km crater, Taruntius [1]. A small part of the multiple walls of that crater are seen in the upper right corner and also to the left of the bottom centre of PR Photo 19a/02. The centre of Taruntius is near the lower right corner of the photo. The rather flat terrain to the left in the photo corresponds to an "opening" in the crater walls.

At the time of the exposure, the Sun was approximately 7deg above the Western horizon to the left [2], and the shadows are therefore quite prominent, approx. 8 times longer than the elevation of the corresponding peaks and hills.

The nominal image sharpness is 0.07 arcsec, or about 130 metres on the lunar surface (in the N-S direction). Elevation differences of a few tens of metres only are therefore visible by the shadows they cast. The VLT image represents what an astronaut (with normal eye acuity of 1 arcmin) would see from 400 km above the surface.

Testing the NAOS-CONICA instrument

This splendid VLT image is a by-product of the ongoing, thorough testing of the NAOS-CONICA (NACO) Adaptive Optics facility, recently installed at the 8.2-m YEPUN telescope, the fourth unit of the Very Large Telescope (VLT) at the ESO Paranal Observatory. This major astronomical instrument has already delivered other impressive views of the Universe, cf. ESO PR 25/01 and ESO PR Photos 04a-c/02.

Normally, NACO functions by "locking" on a point-like guide star, correcting the image smearing caused in the turbulent terrestrial atmophere by measuring the deformation of the recorded image of that star.

However, in the morning of April 30, 2002, shortly before sunrise, the astronomers and engineers working with NACO decided to do a test of wavefront sensing on an extended celestial object. For this, the giant telescope was turned towards the Moon, at that moment seen in the southern constellation of Ophiuchus, high above the western horizon at Paranal [2].

Guiding the advanced instrument on a sunlit lunar peak in the area between Mare Tranquillitatis and Mare Foecunditatis, a short exposure (0.22 seconds) was made through a narrow-band near-infrared filter (at wavelength 2.3 micron), with the adaptive optics (AO) activated in closed-loop mode. The telescope was set to track on that lunar mountain and the flexible AO mirror in NACO superbly "refocussed" the 25 x 25 arcsec2 field-of-view.

Although the atmosphere above Paranal was rather turbulent that morning - the nominal seeing was measured as 1.5 arcsec - and despite the use of an extended feature for the guiding, the NACO adaptive optics compensation achieved nearly theoretical image sharpness, about 0.068 arcsec for this waveband.

Images of other areas on the lunar surface may be attempted in the future with the VLT and NACO.


Notes

[1]: The lunar crater Taruntius (lunar co-ordinates: 5.6deg N; 46.5deg E) was named in 1935 by the International Astronomical Union (IAU) after the Roman philosopher Lucius Firmanus Taruntius (? - 86 B.C.). It measures about 56 km across. The 10-km crater Cameron (6.2deg N; 45.9deg E) was named by the IAU in 1972 after the American astronomer Robert Curry Cameron (1925 - 1972). Names of surface features on planets and their natural satellites, including the Earth`s Moon, are allocated by the "IAU Working Group for Planetary System Nomenclature" and published on the web in the "Gazetteer of Planetary Nomenclature".

[2]: The NACO image was exposed on April 30, 2002, at 09:42 hrs UT. The geometrical circumstances of this observation were the following: the Moon was located at (Azimuth Az = 266deg; Elevation h = +62deg) in the sky above the VLT at the Paranal Observatory; the Earth (Paranal) was located at (Az = 263deg; h = +50deg) and the Sun at (Az = 268deg; h = +7deg) in the lunar sky above the Cameron crater. The distance from Paranal to the Moon was about 370,000 km.

Richard West | alfa
Further information:
http://www.eso.org/outreach/press-rel/pr-2002/phot-19-02.html

More articles from Physics and Astronomy:

nachricht On Mars, sands shift to a different drum
24.05.2019 | University of Arizona

nachricht New Boost for ToCoTronics
23.05.2019 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New studies increase confidence in NASA's measure of Earth's temperature

A new assessment of NASA's record of global temperatures revealed that the agency's estimate of Earth's long-term temperature rise in recent decades is accurate to within less than a tenth of a degree Fahrenheit, providing confidence that past and future research is correctly capturing rising surface temperatures.

The most complete assessment ever of statistical uncertainty within the GISS Surface Temperature Analysis (GISTEMP) data product shows that the annual values...

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

On Mars, sands shift to a different drum

24.05.2019 | Physics and Astronomy

Piedmont Atlanta first in Georgia to offer new minimally invasive treatment for emphysema

24.05.2019 | Medical Engineering

Chemical juggling with three particles

24.05.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>