Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An Ikerbasque researcher at the University of the Basque Country disentangles the strange behaviour of qubits

25.07.2008
Current technology enables the building of electrical circuits similar to those we use at home but reduced thousands of times in size to a micrometric scale of thousandths of a millimetre.

When these circuits are built of superconductor materials and at near-absolute zero cryogenic temperatures, the world of everyday physics is left behind and the amazing world of quantum physics is entered. In this circuit the behaviour is something like an artificial atom (i.e. like the so-called quantum bits (“qubits”) of quantum computers) and the concepts of quantum optics, quantum information and condensed matter are mixed.

An Ikerbasque researcher, ascribed to the University of the Basque Country (UPV/EHU), Enrique Solano, together with colleagues from Germany and Japan, have been working on an experiment and a theoretical model that show that certain quantum leaps are prohibited at times between levels of a qubit superconductor. This phenomenon is produced on sending photons of light with sufficient energy against a qubit installed within a circuit that simulates the behaviour of microwaves, similar to the ovens commonly used domestically but at a micrometric scale. The research has been published in the prestigious Nature Physics journal under the title, ‘Two-photon probe of the Jaynes-Cummings model and Controlled Symmetry Breaking in Circuit QED’. The article may be consulted on-line and will be included in the next print issue of the journal.

To explain this in an easy way, let us go back to our household circuit where, as with any such circuit, sufficient energy has to be supplied in order to move electrons from one place to another, i.e. the required voltage has to be applied. In an atomic circuit, however, the required energy is supplied through photons of light but this is not sufficient to produce the famous quantum jumps between two atomic energy levels. The additional required factor is the presence of the symmetry of the qubit, an enhancing factor, as it were.

It is as if it were not enough for the quantum nature to have the required energy and it requires, moreover, the presence of the qubit to enable – or otherwise – the quantum leaps stimulated by the photons of light energy. If the qubit presents itself with symmetrical potential, the jump is prohibited and is not produced; curiously, if the potential is asymmetric, the quantum leap is permitted. This strange behaviour has been demonstrated by these researchers both at a theoretical level and in the laboratory, where the rules of prohibition may be activated and deactivated at will.

This research is an important step in the thorough understanding of the quantum jumps permitted and prohibited in superconductor circuits, as well as in the potential application of the electrodynamic quantum of circuits to future technology in quantum computation and information.

Enrique Solano is a PhD in Physics from the Federal University of Río de Janeiro. After working at the Ludwig-Maximilian University in Munich, he has been carrying out his research over the last few months at the UPV/EHU thanks to an agreement between the University and the Ikerbasque Foundation.

Garazi Andonegi | alfa
Further information:
http://www.elhuyar.com
http://www.basqueresearch.com/berria_irakurri.asp?Berri_Kod=1830&hizk=I

More articles from Physics and Astronomy:

nachricht UNH scientists help provide first-ever views of elusive energy explosion
16.11.2018 | University of New Hampshire

nachricht NASA keeps watch over space explosions
16.11.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>