Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Kind of MRI Enables Study of Magnets for Computer Memory

17.07.2008
What is there to see inside a magnet that's smaller than the head of a pin?

Quite a lot, say physicists who've invented a new kind of MRI technique to do just that.

The technique may eventually enable the development of extremely small computers, and even give doctors a new tool for studying the plaques in blood vessels that play a role in diseases such as heart disease.

In a recent issue of Physical Review Letters, the scientists report the first-ever magnetic resonance image of the inside of an extremely tiny magnet.

Specifically, the magnet is a "ferromagnet" -- a magnet made of ferrous metal such as iron. It's what most people think of when they hear the word "magnet."

"The magnets we study are basically the same as a refrigerator magnet, only much smaller," said project leader Chris Hammel, Ohio Eminent Scholar in Experimental Physics at Ohio State University. The disk-shaped magnets in this study measured only two micrometers (millionths of a meter) across.

"Because ferromagnets generate such strong magnetic fields, we can't study them with typical MRI. A related technique, ferromagnetic resonance, or FMR, would work, but it's not sensitive enough to study individual magnets that are this small."

Likewise, medical researchers can't use MRI to image plaques formed in the body, because plaques are too small. That's why this new kind of magnetic resonance could eventually become a tool for biomedical research.

The technique combines three different kinds of technology: MRI, FMR, and atomic force microscopy.

They dubbed the technique "scanned probe ferromagnetic resonance force microscopy," or scanned probe FMRFM, and it involves detecting a magnetic signal using a tiny silicon bar with an even tinier magnetic probe on its tip.

As the probe passes over a material, it captures a bowl-shaped image: a curved cross-section of an object. The magnetic signal is more intense in the middle (the "bottom" of the bowl), and fades away toward the edges.

It may sound like an odd configuration, but that's why the new technique works.

Every atom emits radio waves at a particular frequency. But to know where those atoms are, scientists need to be able to localize where the radio waves are coming from.

Large-scale MRI machines, such as those in hospitals, get around this problem by varying the magnetic field by precise amounts as it sweeps over an object. The computer controlling the MRI knows that where the magnetic field equals X, the location equals Y. Sophisticated software combines the data, and doctors get a 3D view inside a patient's body.

For Hammel's tiny magnets, no methods were previously known that would image the inside of them, much less allow for precise localization. But since the new probe system generates a magnetic field that varies naturally, the physicists discovered that they could sweep the probe over an array of magnets and get a 2D view that's similar to a medical MRI. In Physical Review Letters, they reported an image resolution of 250 nanometers (billionths of a meter).

Now that they have their imaging technique, Hammel and his team are beginning to record the properties of many different kinds of tiny magnets -- a critical first step toward developing them for computer memory.

Experts believe that one day, tiny magnets could be implanted on a computer's central processing unit (CPU) chip. Because system data could be recorded on the magnets, such a computer would never need to boot up. It would also be very small; essentially, the entire computer would be contained in the CPU.

For biomedical research, the technique could be used to study tissue samples taken from plaques that form in brain tissues and arteries in the body. Many diseases are associated with plaques, including Alzheimer's and atherosclerosis. Currently, researchers are trying to study the structure of plaques in detail to understand how they form and how they affect conventional MRI images.

Hammel and his team hope to contribute to the development of an instrument that could be sold and used routinely in laboratories. But the technique needs some further development before it could become an everyday tool for the computer industry or for biomedicine.

Hammel's Ohio State coauthors on the paper include Yuri Obukhov, a research associate; Thomas Gramila, associate professor of physics; Denis Pelekhov, a research scientist in the university's Institute for Materials Research; Palash Banerjee, a postdoctoral researcher; and Jongjoo Kim and Sanghun An, both doctoral students. They collaborated with Ivar Martin, Evgueni Nazaretski and Roman Movshovich of Los Alamos National Laboratory; and Sharat Batra of Seagate Research, the research and development center of hard drive manufacturer Seagate Technologies.

This work was funded by the Department of Energy.

Contact: P. Chris Hammel, (614) 247-6928; Hammel.7@osu.edu

Pam Frost Gorder | Newswise Science News
Further information:
http://www.osu.edu

More articles from Physics and Astronomy:

nachricht Immortal quantum particles: the cycle of decay and rebirth
14.06.2019 | Technische Universität München

nachricht Small currents for big gains in spintronics
13.06.2019 | University of Tokyo

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Novel communications architecture for future ultra-high speed wireless networks

17.06.2019 | Information Technology

Climate Change in West Africa

17.06.2019 | Earth Sciences

Robotic fish to replace animal testing

17.06.2019 | Ecology, The Environment and Conservation

VideoLinks
Science & Research
Overview of more VideoLinks >>>