Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Einstein was right, McGill astrophysicists say

07.07.2008
Observations of unique twin-pulsar star system show effects of general relativity

Researchers at McGill University's Department of Physics – along with colleagues from several countries – have confirmed a long-held prediction of Albert Einstein's theory of general relativity, via observations of a binary-pulsar star system. Their results will be published July 3 in the journal Science.

Pulsars are small, ultradense stellar objects left behind after massive stars die and explode as supernovae. They typically have a mass greater than that of our Sun, but compressed to the size of a city like Montreal. They spin at staggering speeds, generate huge gravity fields and emit powerful beams of radio waves along their magnetic poles. These illuminate Earth-based radio-telescopes like rotating lighthouse beacons as the pulsar spins. More than 1,700 pulsars have been discovered in our galaxy, but PSR J0737-3039A/B, discovered in 2003, is the only known double-pulsar system; that is, two pulsars locked into close orbit around one another. The two pulsars are so close to each other, in fact, that the entire binary could fit within our Sun. PSR J0737-3039A/B lies about 1,700 light years from Earth.

This new test of Einstein's theory was led by McGill astrophysics PhD candidate René Breton and Dr. Victoria Kaspi, leader of the McGill University Pulsar Group.

"A binary pulsar creates ideal conditions for testing general relativity's predictions because the larger and the closer the masses are to one another, the more important relativistic effects are," Breton explained.

"Binary pulsars are the best place to test general relativity in a strong gravitational field," agreed Kaspi, McGill's Lorne Trottier Chair in Astrophysics and Cosmology and Canada Research Chair in Observational Astrophysics. ""Einstein's theory predicted that, in such a field, an object's spin axis should slowly change direction as the pulsar orbits around its companion. Imagine a spinning top when its slightly non-vertical: the spin axis slowly changes direction, an elegant motion called 'precession.'"

The researchers discovered that one of the two pulsars is indeed precessing -- just as Einstein's 1915 theory predicts. If Einstein had been wrong, the pulsar wouldn't be precessing, or would precess in some other way.

Pulsars are too small and too distant to to allow us to directly observe their orientation, the researchers explained. However, they soon realized they could make such measurements using the eclipses visible when one of the twin pulsars passes in front of its companion. When this occurs, the magnetosphere of the first pulsar partly absorbs the radio "light" being emitted from the other, which allows the researchers to determine its spatial orientation. After four years of observations, they determined that its spin axis precesses just as Einstein predicted.

Even though spin precession has been observed in Earth's solar system, differences between general relativity and alternative theories of gravity might only shake out in extremely powerful gravity fields such as those near pulsars, Breton said.

"However, so far, Einstein's theory has passed all the tests that have been conducted, including ours. We can say that if anyone wants to propose an alternative theory of gravity in the future, it must agree with the results that we have obtained here."

Breton, Kaspi and colleagues in Canada, the United Kingdom, the U.S., France and Italy studied the twin-pulsar using the 100-metre Robert C. Byrd Green Bank Radio Telescope at the National Radio Astronomy Observatory in Green Bank, WV.

"I think that if Einstein were alive today, he would have been absolutely delighted with these results," said Dr. Michael Kramer, Associate Director of the Jodrell Bank Centre for Astrophysics at Manchester University. "Not only because it confirms his theory, but also because of the novel way the confirmation came about."

Mark Shainblum | EurekAlert!
Further information:
http://www.mcgill.ca
http://www.physics.mcgill.ca/~bretonr/doublepulsar/
http://www.shainblum.com/pulsar/kaspi_breton.mp3

More articles from Physics and Astronomy:

nachricht When fluid flows almost as fast as light -- with quantum rotation
22.06.2018 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

nachricht Thermal Radiation from Tiny Particles
22.06.2018 | Universität Greifswald

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>