Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UI researchers make first measurements of the solar wind termination shock

07.07.2008
Two University of Iowa space physicists report that the Voyager 2 spacecraft, which has been traveling outward from the Sun for 31 years, has made the first direct observations of the solar wind termination shock, according to a paper published in the July 3 issue of the journal Nature.

At the termination shock the solar wind, which continuously expands outward from the sun at over a million miles per hour, is abruptly slowed to a subsonic speed by the interstellar gas.

Don Gurnett, professor of physics in the College of Liberal Arts and Sciences and principal investigator for the plasma wave instrument on Voyager 2, and Bill Kurth, UI research scientist and Voyager co-investigator, said that the shock crossing was marked by an intense burst of plasma wave turbulence detected by the UI instrument, as well as by various effects detected by other instruments on the spacecraft.

At the time of the shock crossing, August 31, 2007, Voyager 2 was at a distance of 83.7 astronomical units (AU), roughly twice the distance between the Sun and Pluto. At this great distance, it took 11.2 hours for the radio signal from the spacecraft to reach Earth.

Shock waves in the thin, ionized gas -- called plasma -- that exists in space are similar in some respects to the shock waves produced by an airplane in supersonic flight. Shock waves in space are believed to play an important role in the acceleration of cosmic rays, which are very energetic atomic particles that continually bombard Earth. The most energetic cosmic rays, which are potentially hazardous to astronauts, are believed to be produced in intense shock waves caused by supernova explosions -- immense stellar explosions that occur in massive stars toward the end of their lives.

The termination shock is believed to be responsible for the origin of less energetic cosmic rays called "anomalous cosmic rays." The recent observations at the termination shock are expected to help physicists understand how cosmic rays are produced by the turbulent fields that exist in such shocks. Gurnett said, "There is no way for us to make direct measure of a super nova shock, so the Voyager 2 measurements at the termination shock provide us the best opportunity in the foreseeable future to understand how cosmic rays are produced by supernova cosmic shocks."

Kurth noted that while some aspects of the termination shock matched scientists' expectations, a number of the observations made by Voyager were surprising and will cause a number of theories to be revised.

Gurnett noted that Voyager 2, launched in 1977, is moving at a speed of 38,000 miles an hour. Even at this considerable speed, the spacecraft will still take 30,000 years to reach a distance equal to that of the nearest star.

The sounds of Voyager's encounter with shock waves at various planets and other sounds of space can be heard by visiting the space audio Web site at: http://www-pw.physics.uiowa.edu/space-audio/.

Gary Galluzzo | EurekAlert!
Further information:
http://www.uiowa.edu
http://www-pw.physics.uiowa.edu/space-audio/

More articles from Physics and Astronomy:

nachricht Researchers discover surprising quantum effect in hard disk drive material
26.04.2019 | DOE/Argonne National Laboratory

nachricht Unprecedented insight into two-dimensional magnets using diamond quantum sensors
26.04.2019 | Universität Basel

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unprecedented insight into two-dimensional magnets using diamond quantum sensors

For the first time, physicists at the University of Basel have succeeded in measuring the magnetic properties of atomically thin van der Waals materials on the nanoscale. They used diamond quantum sensors to determine the strength of the magnetization of individual atomic layers of the material chromium triiodide. In addition, they found a long-sought explanation for the unusual magnetic properties of the material. The journal Science has published the findings.

The use of atomically thin, two-dimensional van der Waals materials promises innovations in numerous fields in science and technology. Scientists around the...

Im Focus: Full speed ahead for SmartEEs at Automotive Interiors Expo 2019

Flexible, organic and printed electronics conquer everyday life. The forecasts for growth promise increasing markets and opportunities for the industry. In Europe, top institutions and companies are engaged in research and further development of these technologies for tomorrow's markets and applications. However, access by SMEs is difficult. The European project SmartEEs - Smart Emerging Electronics Servicing works on the establishment of a European innovation network, which supports both the access to competences as well as the support of the enterprises with the assumption of innovations and the progress up to the commercialization.

It surrounds us and almost unconsciously accompanies us through everyday life - printed electronics. It starts with smart labels or RFID tags in clothing, we...

Im Focus: Energy-saving new LED phosphor

The human eye is particularly sensitive to green, but less sensitive to blue and red. Chemists led by Hubert Huppertz at the University of Innsbruck have now developed a new red phosphor whose light is well perceived by the eye. This increases the light yield of white LEDs by around one sixth, which can significantly improve the energy efficiency of lighting systems.

Light emitting diodes or LEDs are only able to produce light of a certain colour. However, white light can be created using different colour mixing processes.

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...
All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

Researchers discover surprising quantum effect in hard disk drive material

26.04.2019 | Physics and Astronomy

Hopkins researchers ID neurotransmitter that helps cancers progress

26.04.2019 | Life Sciences

Unprecedented insight into two-dimensional magnets using diamond quantum sensors

26.04.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>