Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Eclipses again prove key for Einstein

04.07.2008
Observations of unique dead star system show effects of general relativity

Eclipses in a unique system of two dead stars, called pulsars, has shown that one of the pair is ‘wobbling’ in space - just like a spinning top. The effect, called precession, is precisely as predicted by Albert Einstein and is thus a new and exciting confirmation of his theory.

The discovery was made by researchers at The University of Manchester's Jodrell Bank Centre for Astrophysics - working as part of an international team of astronomers - and will be published on 4 July in the journal Science.

The star system contains two pulsars which were formed when a pair of massive stars exploded and their cores collapsed to create objects whose mass is greater than that of our Sun, but compressed to the size of a city like Manchester. They are spinning at staggering speeds and emit powerful beams of radio waves which sweep across our radio-telescopes like cosmic lighthouses producing regular pulses of energy - hence their name, pulsars. The pulsar pair, PSR J0737-3039A/B, is the only known system in our galaxy where two pulsars are locked into such close orbit around one another - the entire system could fit inside our Sun.

Prof Michael Kramer of The University of Manchester explained: "We discovered the double pulsar in 2003 using the Parkes Radio Telescope in Australia and have since been carefully timing the arrival of its pulses using several telescopes, including the Lovell Telescope at Jodrell Bank, and the Green Bank Telescope in the US. It has proved to be the best test we have for the predictions of Einstein's theory of gravity, general relativity".

René Breton of McGill University added: "The double pulsar creates ideal conditions for testing general relativity's predictions because the larger and the closer two massive objects are to one another, the more important relativistic effects are.

"Binary pulsars are the best place to test general relativity in a strong gravitational field," agreed Prof Victoria Kaspi, also of McGill University. "Einstein predicted that, in such a field, the axis about which an object rotates will precess - or change direction slowly as the pulsar orbits around its companion. Imagine a spinning top tilted over slightly to one side - the spin axis wobbles.

"Pulsars are too small and too distant to allow us to observe this wobble directly", Breton explained. “However, as they orbit each other every 145 minutes, each passes in front of the other and the astronomers soon realized they could measure the direction of the pulsar's spin axis as the highly magnetized region surrounding it blocks the radio waves being emitted from the other. After patiently collecting the radio pulses over the past four years, they have now determined that its spin axis precesses exactly as Einstein predicted.”

Breton explained that even though spin precession has been observed in Earth's solar system, differences between general relativity and alternative theories of gravity might only become apparent in extremely powerful gravity fields such as those near pulsars.

"So far, Einstein's theory has passed all the tests that have been conducted, including ours,” said Breton. “We can now say that if anyone wants to propose an alternative theory of gravity in the future, it must agree with the results that we have obtained here.

"I think that if Einstein were alive today, he would have been absolutely delighted with these results," concluded Prof Kramer. "Not only because it confirms his theory, but also because of the novel and amazing way the confirmation has come about."

Alex Waddington | alfa
Further information:
http://www.jb.man.ac.uk/news/pulsareclipse/

More articles from Physics and Astronomy:

nachricht A new force for optical tweezers awakens
19.06.2019 | University of Gothenburg

nachricht View of the Earth in front of the Sun
19.06.2019 | Georg-August-Universität Göttingen

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

A new force for optical tweezers awakens

19.06.2019 | Physics and Astronomy

New AI system manages road infrastructure via Google Street View

19.06.2019 | Information Technology

A new manufacturing process for aluminum alloys

19.06.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>