Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hard X-ray Nanoprobe Provides New Capability to Study Nanoscale Materials

26.06.2008
The Center for Nanoscale Materials’ (CNM) newly operational Hard X-ray Nanoprobe at the U.S. Department of Energy's (DOE) Argonne National Laboratory is one of the world's most powerful x-ray microscopes.

It has been designed to study novel nanoscale materials and devices aimed at, for example, harvesting solar energy more efficiently, providing more efficient lighting, or enabling next-generation computing.

The weak interaction of hard x-rays with matter allows researchers to penetrate into materials, look through process gases and study sub-surface phenomena. At the same time, this property also has made fabrication of efficient x-ray optics difficult, limiting the degree to which hard x-rays can be focused.

Using advanced x-ray optics called Fresnel zone plates -- similar in appearance to the large Fresnel lenses used to reflect light in lighthouses – along with a laser-based nanopositioning system, Argonne is able to focus x-rays to the smallest spot yet achieved with this type of illumination source. The microscope combines scanning-probe and full-field transmission imaging to create both three-dimensional visualizations of complex systems and devices as well as to perform sensitive quantitative analysis of elemental composition, chemical states, crystallographic phase and strain.

"It's the highest resolution microscope of its type in the world right now," acting CNM Division Director Stephen Streiffer said. "The Nanoprobe is one of the tools that make the CNM unique."

The Nanoprobe uses x-rays with photon energies between 3-30 kiloelectron volts to produce images with initially 30 nanometer resolution – roughly the size of 100 atoms. As x-ray optics continue to improve and novel x-ray optics are developed, it is anticipated that significantly higher spatial resolution will be reached over the lifetime of the Nanoprobe.

The Hard X-ray Nanoprobe was designed, constructed and is operated in partnership between the CNM and the X-Ray Science Division of the Advanced Photon Source (APS) at Argonne National Laboratory. The CNM pursues the development and characterization of novel nanoscale materials and devices. The capabilities of Argonne's Advanced Photon Source play a key role in that their hard X-rays, utilized by the Nanoprobe beamline, provide unprecedented capabilities to characterize very small structures.

“The instrument allows characterization of nanoscale materials and devices in previously unavailable detail, and is particularly well suited for the study of buried structures, in real world environments and for dynamics." Nanoprobe Beamline Director Jörg Maser said.

The Nanoprobe became operational in October of 2007 and is open to all science users based on peer review under the user programs of the APS and the CNM. The CNM is a national user facility, providing tools and expertise for nanoscience and nanotechnology research. Funding for this research was provided by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. The mission of the Basic Energy Sciences (BES) program - a multipurpose, scientific research effort - is to foster and support fundamental research to expand the scientific foundations for new and improved energy technologies and for understanding and mitigating the environmental impacts of energy use.

Argonne National Laboratory brings the world’s brightest scientists and engineers together to find exciting and creative new solutions to pressing national problems in science and technology. The nation’s first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America’s scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for U.S. Department of Energy's Office of Science.

Brock Cooper | newswise
Further information:
http://www.anl.gov

More articles from Physics and Astronomy:

nachricht A two-atom quantum duet
12.11.2018 | Institute for Basic Science

nachricht Improving understanding of how the Solar System is formed
12.11.2018 | Goethe-Universität Frankfurt am Main

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

Im Focus: Nanorobots propel through the eye

Scientists developed specially coated nanometer-sized vehicles that can be actively moved through dense tissue like the vitreous of the eye. So far, the transport of nano-vehicles has only been demonstrated in model systems or biological fluids, but not in real tissue. The work was published in the journal Science Advances and constitutes one step further towards nanorobots becoming minimally-invasive tools for precisely delivering medicine to where it is needed.

Researchers of the “Micro, Nano and Molecular Systems” Lab at the Max Planck Institute for Intelligent Systems in Stuttgart, together with an international...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

In focus: Peptides, the “little brothers and sisters” of proteins

12.11.2018 | Life Sciences

Materials scientist creates fabric alternative to batteries for wearable devices

12.11.2018 | Materials Sciences

A two-atom quantum duet

12.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>