Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Better understanding of space weather

18.06.2008
All modern societies rely heavily on space systems for communications and resource information, including meteorological, navigation and remote sensing systems.

There are high costs and high risks associated with the consequences of space weather events, as insurance companies recognise.

Intense space weather events are triggered by the explosive release of energy stored in the Sun’s magnetic field.

A strong burst of electromagnetic energy reaches the Earth with the potential to disrupt many of our fundamental services, such as satellite and aviation operations, navigation, and electricity power grids. Telecommunications and information technology are likewise vulnerable to space weather.

Research by the Radio and Space Plasma Physics Group in the University of Leicester’s Department of Physics and Astronomy helps our understanding of coupling processes between the solar wind and the Earth’s magnetosphere by allowing the observation of the consequences of space weather with an unprecedented resolution.

Postgraduate researcher James Borderick explained: “We introduce the importance of utilising ground-based measurements of the near space environment in conjunction with spacecraft observations and then proceed to explain the direct influences of space weather on our own technological systems.

“Utilising our new radar modes and an international array of ground-based and space-based instruments, we are ever increasing our understanding of the countless phenomena associated with the solar-terrestrial interaction.”

“One day this may lead us to the accurate predictions of the occurrence and consequences of phenomena such as Coronal Mass Ejections (CMEs), and perhaps an active defence.”

The use of ground-based radars for observations of ionospheric and magnetospheric dynamics is well established. The Super Dual Auroral Radar Network (SuperDARN) consists of networks of High-Frequency radars surrounding the northern and southern poles, which have yielded extensive data on our near space environment.

A new “double pulse” pulse sequence has been implemented on the Radio Space Plasma Physics Group’s Co-operative UK Twin Located Auroral Sounding System (CUTLASS) radars. CUTLASS forms part of SuperDARN.

The new sounding mode enhances the temporal resolution of observations of plasma irregularities within the ionosphere. It increases the cadence of pulse transmissions within the same transmission time as the standard SuperDARN-operating mode.

As an undergraduate physicist at the University of Leicester, he was awarded both the Philips and Departmental Prizes in Physics and achieved the highest mark of all 4th year undergraduates in his final year. Between his penultimate and final years, he obtained a position on the prestigious SURE research programme where he conducted a preliminary investigation on the coupling processes between the Solar Wind and the Earth’s magnetic field. He has just recently presented his Double Pulse findings at the SuperDARN Conference of 2008 in New South Wales, Australia. In the future, he hopes to continue in academia, forwarding science and simultaneously enthusing the next generation of scientists.

The research is being presented to the public at the University of Leicester on Thursday 26th June. The Festival of Postgraduate Research introduces employers and the public to the next generation of innovators and cutting-edge researchers, and gives postgraduate researchers the opportunity to explain the real world implications of their research to a wide ranging audience.

More information about the Festival of Postgraduate Research is available at: www.le.ac.uk/gradschool/festival

Ather Mirza | alfa
Further information:
http://www.le.ac.uk/gradschool/festival

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Lying in a foreign language is easier

19.07.2018 | Social Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>