Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Europe determines a grand plan for astronomy

16.06.2008
Priorities for future astronomy projects to be discussed at Liverpool ASTRONET Symposium (16-19 June 2008)

The long-term future of European ground-based and spaced-based astronomy will be debated at the ASTRONET Symposium in Liverpool between 16 and 19 June 2008.

The Symposium will help to determine if Europe will be able to retain its position as world leader in astronomical research and space exploration by establishing a realistic plan for the required funds and infrastructures for the necessary scientific advances to be made.

The ASTRONET Symposium, organised by Liverpool John Moores University – currently ranked in the top 1% of institutions worldwide for its space science research* – marks a crucial stage in the pan-European ASTRONET initiative.

Over 300 of Europe’s leading astronomers are travelling to Liverpool to debate and refine the content of key recommendations of the ‘Road Map to the Stars’. Many of the projects highlighted are crucial for maintaining European leadership in key areas of astronomy and their timely implementation is of paramount importance.

Large-scale ground-based projects, such as the European Extremely Large Telescope or the Square Kilometre Array, are all under scrutiny. As are proposed space missions to Mars, Saturn’s satellites Titan and Enceladus and Jupiter’s satellite Europa, to investigate such crucial questions as the likelihood of extraterrestrial life.

Established by a consortium of European science agencies in 2005, including the UK’s Science and Technology Facilities Council (STFC), the European Space Agency (ESA) and the European Southern Observatory (ESO), ASTRONET was set up to help devise a priority list of space missions and ground-based facilities to be developed over the next two decades, along with the necessary human resources and new cooperative arrangements. In addition, the further enhancement of the impact of astronomy on public appreciation of science and science education has been taken up within ASTRONET's remit.

Once agreed, the Road Map will act as blueprint for Europe's ongoing exploration of the Universe over the next 20 years, guiding all major astronomical research and development.

Mike Bode, LJMU’s Professor of Astrophysics, who has led the ASTRONET Road Map project since 2006, said:

“Europe already has some of the most advanced and capable observational facilities together with some of the World’s most talented scientists and engineers. This gives us an enviable platform from which to build as we seek answers to some of the most fundamental questions in science.

“New facilities will enable us to understand such things as the nature of the so-called Dark Matter and Dark Energy that make the bulk of the Universe and also to determine if there is other life ‘out there’. Such discoveries would be a major breakthrough for humankind. However, there is tremendous competition from outside Europe and to maintain our lead we need to push ahead with developing state-of-the-art facilities in a timely and coherent fashion.

ASTRONET Board Chair, Johannes Andersen, Director of the Nordic Optical Telescope on La Palma, added:

“In order for us to progress, Europe needs to make a step change in its capabilities and get its act together to foster even greater pan-European collaboration. Now is the time to choose world-class scientific eminence over cherished, but obsolete models of the past. ASTRONET is our opportunity to formulate a coherent pan-European plan with a 20 year horizon.”

During the Symposium, scientists will discuss research relating to all astrophysical objects from the Sun and Solar system to the overall structure of the Universe, as well as every observing technique, in space and from the ground, and from radiation at any wavelength, to astroparticles and gravitational waves. Theory, computing, human resources, and outreach will be important subjects as well.

Professor Bode continued:

“Astronomy has entered an era of exciting discoveries that provide answers to fundamental questions. At the heart of our increasing understanding of the Universe is the development of sophisticated research facilities incorporating new technologies. These span ground-based observatories, space missions, ‘virtual observatories’, large-scale computing infrastructures and laboratory studies.

“Given the scale and cost of these facilities, it is vital that scientists and key funding bodies across Europe reach a consensus, based on a defined scientific imperative, about which developments to invest in over the next 20 years. We will also be reviewing the undoubted impact astronomy has on education and the engagement of the public with science and technology, and how we can further enhance these important aspects of our work across Europe.”

The funding landscape for large projects in Europe is highly complex and fragmented, encompassing national funding agencies, research institutes and universities, scientific agencies as well as ministries. In this respect alone, developing a single coherent European programme for astronomy has been challenging.

The ASTRONET Board is confident that the coherent vision outlined in the Road Map, encompassing all aspects of astronomy, will help to convince governments that European astronomy can and must stay at the forefront of global developments in this field.

ASTRONET coordinator, Jean-Marie Hameury, Deputy Director of the Institut National des Sciences de l’Univers at CNRS, commented:

“There have always been close links between frontier scientific research and cutting edge industrial development. It may come as a surprise but a number of technological developments including high speed computers, medical diagnostic equipment, industrial cooling systems and high precision optical equipment can trace their origins back to advances in astronomy. The Road Map will have ramifications that extend far beyond astronomy, impacting on industry, education and research. That’s why it’s so imperative that we get it right.”

Recommendations arising from the Liverpool ASTRONET Symposium will be incorporated into the final Road Map due to published in October 2008.

Shonagh Wilkie | alfa
Further information:
http://www.astro.livjm.ac.uk/~airs2008/

More articles from Physics and Astronomy:

nachricht New Boost for ToCoTronics
23.05.2019 | Julius-Maximilians-Universität Würzburg

nachricht The geometry of an electron determined for the first time
23.05.2019 | Universität Basel

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Plumbene, graphene's latest cousin, realized on the 'nano water cube'

23.05.2019 | Materials Sciences

New flatland material: Physicists obtain quasi-2D gold

23.05.2019 | Materials Sciences

New Boost for ToCoTronics

23.05.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>