Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Students Explore the Physics of Fizz

13.06.2008
Students use the principles of physics to explain the Mentos-Diet Coke reaction.

Just about everyone knows what happens when you drop Mentos mints into a Diet Coke.

Students at Appalachian State University have documented why the reaction occurs by studying the physics responsible for the fizzy result. Their results have been published in the June 2008 issue of the American Journal of Physics.

Tonya Coffey, an assistant professor of physics at Appalachian, developed the research project to as a way for sophomore-level students to build on skills they learned in their freshmen physics courses.

Through a series of experiments, the students found that a reaction between the rough surface of the Mentos, and the potassium benzoate and aspartame contained in Diet Coke were responsible for the famous geyser reaction, in which the liquid can spew up to 30 feet.

In the process, they also learned about the principles of thermodynamics, fluid mechanics, surface science and the physics of eruptions.

“We try to teach students what real experiments are like,” Coffey said. “I thought it would be good for the students to work on an experiment that doesn’t have a known outcome—because that’s what research is.”

Coffey asked her students to find out everything they could about the Diet Coke and Mentos reaction, develop a question about the reaction and design an experiment to answer their question. The students’ only restrictions were to design an experiment that could be accomplished on a tight budget and to use existing equipment at the university.

“We discussed what a real researcher has to do when designing an experiment to answer a question,” Coffey said. Students studied what makes a good experiment, how complications can arise, the need to narrow the number of unknowns in an experiment, and the importance of designing an experiment that tests for one variable at time.

The students measured the volume of liquid displaced and the distance it traveled when a variety of items were added to Diet Coke – including Mentos, Wint-O-Green Lifesavers, rock salt, table salt and sand.

They also studied the surface roughness of the candy and other materials by using a scanning electron microscope and an atomic force microscope.

So why does the reaction occur? In an opened container of soda, carbon dioxide gas bubbles out over the course of minutes or hours until the concentration of carbon dioxide left in the soda is proportional to the carbon dioxide in the surrounding air. This de-fizzing reaction is slow because the surface tension of the liquid is very high, which keeps the gas bubbles trapped.

But when a Mentos is dropped in the beverage, it breaks the surface tension and as it falls the candy’s surfactant coating further reduces the surface tension of the liquid. The candy’s rough surface also provides growth sites for the gas, making it easier for carbonation to escape as a foam geyser.

The geyser also occurs when sand, salt or lifesavers were added to the Diet Coke, but the mass lost and volume traveled is much less spectacular.

Tonya Coffey | newswise
Further information:
http://www.appstate.edu

More articles from Physics and Astronomy:

nachricht Smallest transistor worldwide switches current with a single atom in solid electrolyte
17.08.2018 | Karlsruher Institut für Technologie (KIT)

nachricht Protecting the power grid: Advanced plasma switch for more efficient transmission
17.08.2018 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>