Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UC San Diego Physicists Reveal Secrets of Newest Form of Carbon

12.06.2008
Using one of the world’s most powerful sources of man-made radiation, physicists from UC San Diego, Columbia University and Lawrence Berkeley National Laboratory have uncovered new secrets about the properties of graphene—a form of pure carbon that may one day replace the silicon in computers, televisions, mobile phones and other common electronic devices.

Graphene—a single layer of carbon atoms arranged in a honeycombed lattice—has a number of advantages over silicon. Because it is an optically transparent conductor of electricity, graphene could be used to replace current liquid crystal displays that employ thin metal-oxide films based on indium, a rare metal that is becoming increasingly expensive and likely to be in short supply within a decade. The problem for scientists is that not much is known about its optical and electronic properties because graphene, which was discovered only four years ago, has resisted traditional forms of spectroscopy.

In this week’s advance online publication of the journal Nature-Physics, the physicists report that they used the Advanced Light Source at the Berkeley lab—one of the most powerful and versatile sources of electromagnetic radiation, from the infrared to x-ray region, in the world—to reveal some of those secrets. The researchers said that their study shows that the electrons in graphene strongly interact not only with the honeycomb lattice, but also with each other.

“Infrared and optical experiments are capable of providing some of the most valuable insights into the electronic properties of materials, including interactions between electrons in a material,” said Dimitri Basov, a professor of physics at UC San Diego who headed the project. “But it was extremely difficult to measure the absorption of light in a single monolayer of graphene, because not much light is absorbed. To do this, we had to start with a very bright light. It was spectroscopy to the extreme.”

The radiation from the Advanced Light Source, or ALS, is about 100 million times brighter than that from the most powerful X-ray tube, the source used in a dentist's machine. High brightness means that the radiation is highly concentrated and many photons per second can be directed onto a tiny area of a material.

Just as dentists use x rays to see inside your gums, scientists use the ALS’s radiation—generated by accelerating electrons around a circular racetrack at close to the speed of light—to look inside materials.

“It took some difficult experimental work to make this measurement,” said Basov. “It was by far the most complicated measurement we have ever done.”

Zhiqiang Li, a UCSD physics graduate student in Basov’s group, was the first author of the paper. Other principal investigators involved in the discovery were Michael Martin, staff scientist at the Berkeley laboratory’s ALS; Philip Kim, an associate professor of physics at Columbia University; and Horst Stormer, a professor of physics at Columbia and winner of the 1998 Nobel Prize in Physics.

Funding for the project was provided by the U.S. Department of Energy.

Kim McDonald | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

NSF-supported researchers to present new results on hurricanes and other extreme events

19.07.2018 | Earth Sciences

Scientists uncover the role of a protein in production & survival of myelin-forming cells

19.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>