Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Successful first test of high speed ‘penetrator’

11.06.2008
High speed ‘penetrators’ that could one day be used to breach the surface of planets have successfully passed their first test in the UK, accelerating to 700 miles per hour before striking their target.

A team led by the University College London (UCL) test-fired the projectiles in Wales, recording a peak of 20,000 gee upon impact (where humans can survive up to 10 gee). Penetrators, which can carry data-collecting systems and sensors, are being developed as an alternative to manned space flight for the future exploration of moons in our solar system.

The team, led by Professor Alan Smith from UCL’s Mullard Space Science Laboratory, the University of Surrey, Birkbeck College, Imperial College, the Open University and QinetiQ ran the first three test firings of the high speed penetrators at QinetiQ’s long test track in Pendine, South Wales in May 2008. The projectiles were secured to a rocket sledge and fired along a rail track.

The penetrators, which contained a data- and sample-collecting system, a variety of sensors, accelerometers, a seismometer and a mass spectrometer (for analysis) hit a sand target at around 700 miles per hour. The electronics remained fully operational during impact, recording the deceleration in minute detail which peaked at about 20,000 gee (20,000 times the acceleration due to gravity, where humans can only survive around 10 gee).

Penetrator technology is being developed for future space exploration, to pierce the surface of planetary bodies such as our moon and the icy moons of Jupiter and Saturn. Penetrators offer a low cost approach to planetary exploration, but the enormous impact forces have meant that scientists have so far been reluctant to trust them.

Professor Smith said: “Prior to this trial, we had to rely on computer modelling and analysis. As far as we can tell the trial has been enormously successful, with all aspects of the electronics working correctly during and after the impact. I congratulate the team on this really impressive achievement – to get everything right first time is wonderful, and a tribute to British technology and innovation.”

The impact trial is part of a series of technical developments and studies in preparation for future planetary space missions. These include the proposed UK MoonLITE mission to the Moon which is hoped to be launched in 2013, and possible missions to moons of the outer planets – Europa, Ganymede, Enceladous and Titan. The trials were funded by the Science and Technology Facilities Council as part of MSSL’s Rolling Grant.

Professor Smith leads the UK penetrator consortium which is a grouping of British universities (UCL, University of Surrey, Birkbeck College, Imperial College, Leicester University and Open University) and UK industries (Astrium, QinetiQ and Surrey Satellite Technology Ltd).

Stuart Miller | alfa
Further information:
http://www.surrey.ac.uk

More articles from Physics and Astronomy:

nachricht Computer model predicts how fracturing metallic glass releases energy at the atomic level
20.07.2018 | American Institute of Physics

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>