Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Human Mobility is Not Random

06.06.2008
In the cover story in this week’s Nature magazine, Northeastern University physicist Professor Albert-László Barabási and his team found that humans can be characterized based on how they move. In the article, titled “Understanding Individual Human Mobility Patterns,” the authors discuss how, for the first time, they were able to follow individuals in real-time and discovered that despite the diversity of their travel history, humans follow simple reproducible patterns.

In a groundbreaking paper published as a cover story in this week’s Nature magazine, Northeastern University physicist Professor Albert-László Barabási and his team found that humans can be characterized based on how they move.

In the article, titled “Understanding Individual Human Mobility Patterns,” the authors discuss how, for the first time, they were able to follow individuals in real-time and discovered that despite the diversity of their travel history, humans follow simple reproducible patterns.

Barabási, along with co-authors Marta C. González and César A. Hidalgo, studied the trajectory of 100,000 anonymized cell phone users – randomly selected from more than 6 million users – and tracked them for a six-month period. They found that contrary to what the prevailing Lévy flight and random walk models suggest, human trajectories show that while most individuals travel only short distances and a few regularly move over hundreds of miles, they all follow a simple pattern regardless of time and distance, and they have a strong tendency to return to locations they visited before.

“We found that human trajectories show a high degree of temporal and spatial regularity, each individual being characterized by a time-independent characteristic travel distance and a significant probability to return to a few highly frequented locations, like home and work” said Albert-László Barabási, Distinguished Professor of Physics and Director of the Center for Complex Network Research (CCNR) at Northeastern University.

“Our study shows that humans, after only three months of saturated behavior, reach stability in their mobility patterns, and the trajectories become identical,” added Marta C. González, Ph.D. in Physics and Research Assistant at the CCNR. “People devote their time to a few locations, although spending their remaining time in five to 50 places, visited with diminished regularity.”

The location of cell phone users was located every time they received or initiated a call or a text message, allowing Barabási and his team to reconstruct the user’s time-resolved trajectory. In order to make sure that the findings were not affected by an irregular call pattern, the researchers also studied the data set that captured the location of 206 cell phone users, recorded every two hours for an entire week. The two data sets showed similar results, the second validating the first.

The findings of this research complement the notion that human mobility can be generalized by the Lévy flight statistics, as suggested by a 2006 study that found that bank note dispersal is a proxy for human movement. That study analyzed the dispersal of about half-a-million dollar bills in the U.S. and concluded that human travel on geographical scales is an ambivalent and effectively superdiffusive process. By using a different methodology, Barabási’s group was able to find evidence to complement those findings.

“Contrary to bank notes, mobile phones are carried by the same individual during his/her daily routine, offering the best proxy to capture individual human trajectories, said César A. Hidalgo, Ph.D. and Research Assistant at the CCNR. “Also, unlike dollar bills that always follow the trajectory of the current owner and diffuse, humans display significant regularity and do not diffuse.”

“The inherent similarity in travel patterns of individuals could impact all phenomena driven by human mobility, from epidemic prevention to emergency response, urban planning, traffic forecasting and agent-based modeling,” added Barabási.

About Northeastern

Founded in 1898, Northeastern University is a private research university located in the heart of Boston. Northeastern is a leader in interdisciplinary research, urban engagement, and the integration of classroom learning with real-world experience. The university's distinctive cooperative education program, where students alternate semesters of full-time study with semesters of paid work in fields relevant to their professional interests and major, is one of the largest and most innovative in the world. The University offers a comprehensive range of undergraduate and graduate programs leading to degrees through the doctorate in six undergraduate colleges, eight graduate schools, and two part-time divisions.

Renata Nyul | newswise
Further information:
http://www.northeastern.edu

More articles from Physics and Astronomy:

nachricht Liquid crystals in nanopores produce a surprisingly large negative pressure
25.04.2019 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

nachricht New robust device may scale up quantum tech, researchers say
25.04.2019 | Purdue University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Full speed ahead for SmartEEs at Automotive Interiors Expo 2019

Flexible, organic and printed electronics conquer everyday life. The forecasts for growth promise increasing markets and opportunities for the industry. In Europe, top institutions and companies are engaged in research and further development of these technologies for tomorrow's markets and applications. However, access by SMEs is difficult. The European project SmartEEs - Smart Emerging Electronics Servicing works on the establishment of a European innovation network, which supports both the access to competences as well as the support of the enterprises with the assumption of innovations and the progress up to the commercialization.

It surrounds us and almost unconsciously accompanies us through everyday life - printed electronics. It starts with smart labels or RFID tags in clothing, we...

Im Focus: Energy-saving new LED phosphor

The human eye is particularly sensitive to green, but less sensitive to blue and red. Chemists led by Hubert Huppertz at the University of Innsbruck have now developed a new red phosphor whose light is well perceived by the eye. This increases the light yield of white LEDs by around one sixth, which can significantly improve the energy efficiency of lighting systems.

Light emitting diodes or LEDs are only able to produce light of a certain colour. However, white light can be created using different colour mixing processes.

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

High-efficiency thermoelectric materials: New insights into tin selenide

25.04.2019 | Materials Sciences

Salish seafloor mapping identifies earthquake and tsunami risks

25.04.2019 | Earth Sciences

Using DNA templates to harness the sun's energy

25.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>