Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Galaxy Collision Debris a Laboratory to Study Star Formation

05.06.2008
Researchers have shown that the process of star formation in areas of debris formed when two galaxies collide is essentially the same as star formation inside galaxies, meaning that the intergalactic medium can be a used as a simpler, more accessible laboratory for the study of stellar evolution.

An international team of researchers led by Médéric Boquien of the University of Massachusetts Amherst has shown that debris formed when two galaxies collide makes a simpler, more accessible laboratory for studying the process of star formation. The team presented their results at a press conference Monday, June 2 at the American Astronomical Society meeting in St. Louis, Missouri.

“Surprisingly, we found that star formation is essentially the same in galaxies and in the debris which occurs between galaxies, in spite of tremendous differences in the environment,” says Boquien, a post-doctoral researcher in the astronomy department. “This is a very exciting result, meaning that we can use these regions, which are located outside a pre-existing stellar disk and are much simpler than star forming regions in galaxies, to study the creation of stars.”

Additional members of the team include Pierre-Alain Duc of the National Center for Scientific Research in France, Frédéric Bournaud of the French Atomic Energy Commission, Jonathan Braine of the Bordeaux Observatory, Vassilis Charmandaris of the University of Crete, Greece and Ute Lisenfeld at the University of Granada, Spain.

Collision debris is the remains of a collision between two or more galaxies, in which the interplay of gravity can create long expanding “tidal tails.” This debris, which is ejected into the intergalactic medium located between galaxies, is composed mainly of gas and dust stripped from their parent galaxies. They can be as heavy as several billion suns, and serve as a reservoir that feeds star formation. The most massive of these star forming regions, called tidal dwarf galaxies, can be bound by their own gravity and rotate.

Barely studied since their discovery in the 1950s, these areas have sparked increasing interest from astronomers, and were recently used to test the nature of dark matter. What was not known was whether star formation was the same in collision debris as it was in galaxies, a key factor in determining their usefulness in the study of star formation.

To answer this question, Boquien and his team observed a carefully selected sample of six interacting galaxy systems located a distance of 55 to 375 million light years from Earth. The study focused on extreme systems in which a large fraction (up to 85%) of star formation takes place in collision debris, rather than in the main body of the parent galaxies, a situation that is representative of the distant, young Universe.

By simultaneously analyzing multiple wavelengths of emissions, including infrared radiation from the dust heated by young stars picked up by the Spitzer space observatory, the team was able to trace star formation and determine that the process was occurring in essentially the same way in the intergalactic medium and inside galaxies. Ultraviolet energy detected by the Galaxy Evolution Explorer and images of ionized hydrogen atoms and optical and infrared light from eight ground-based telescopes were also used.

“The best regions to study stellar evolution would be those completely devoid of old stars, and we were able to find some regions which satisfy this criteria,” says Boquien, who adds that these regions are generally quite isolated, unlike star forming regions in galaxies which can be surrounded by many bright astronomical objects. “As star formation apparently occurs in a similar way in galaxies, results we obtain studying intergalactic star forming regions can be confidently extended to galaxies.”

Médéric Boquien | newswise
Further information:
http://www.astro.umass.edu

More articles from Physics and Astronomy:

nachricht Magnetic micro-boats
21.03.2019 | Max-Planck-Institut für Polymerforschung

nachricht Levitating objects with light
19.03.2019 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

To proliferate or not to proliferate

21.03.2019 | Life Sciences

Magnetic micro-boats

21.03.2019 | Physics and Astronomy

Motorless pumps and self-regulating valves made from ultrathin film

21.03.2019 | HANNOVER MESSE

VideoLinks
Science & Research
Overview of more VideoLinks >>>