Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Phoenix Mars lander puts arm, tools to work

30.05.2008
NASA's Mars lander is returning more detailed images from the Martian surface and is now preparing its instruments for science operations.

Phoenix transmitted a 360-degree panorama of its frigid Martian world, freed its nearly 8-foot robotic arm, tested a laser instrument for studying dust and clouds, and transmitted its second weather report on Wednesday evening.

"We've imaged the entire landing site, all 360 degrees of it. We see it all,"
said Phoenix principal investigator Peter Smith, University of Arizona, Tucson.
"You can see the lander in a fish-eye view that goes all the way out to the entire horizon "We are now making plans for where to dig first, and what we'll save for later."

Commands were communicated to Phoenix to rotate the robotic arm's wrist to unlatch its launch lock, raise the forearm and move it upright to release the elbow restraint.

"We're pleased that we successfully unstowed the robotic arm. In fact, this is the first time we have moved the arm in about a year," said Matthew Robinson of NASA's Jet Propulsion Laboratory in Pasadena, Calif. The arm deployment brings the Phoenix mission to a significant milestone.

"We have achieved all of our engineering characterization prerequisites, with all the critical deployments behind us," said JPL's Barry Goldstein, Phoenix project manager. "We're now at a phase of the mission where we're characterizing the science payload instruments. That's a very important step for us."

After a health check that tests the arm at a range of warmer and colder temperatures, the titanium and aluminum arm will soon be tasked with its first

assignment: to use its camera to look under the spacecraft to assess the terrain and underside of the lander.

The robotic arm will later trench into the icy layers of northern polar Mars and deliver samples to instruments that will analyze what this part of Mars is made of, what its water is like, and whether it is or has ever been a possible habitat for life.

Another milestone for the mission included the activation of the laser instrument called light detection and ranging instrument, or lidar.

"The Canadians are walking on moonbeams. It's a huge achievement for us," said Jim Whiteway Canadian Science lead from York University, Toronto. The lidar is a critical component of Phoenix's weather station, provided by the Canadian Space Agency. The instrument is designed to detect dust, clouds and fog by emitting rapid pulses of green laser-like light into the atmosphere. The light bounces off particles and is reflected back to a telescope.

"One of the main challenges we faced was to deliver the lidar from the test lab in Ottawa, Canada, to Mars while maintaining its alignment within one one-hundredth of a degree," said Whiteway. "That's like aiming a laser pointer at a baseball at a distance from home plate to the center field wall, holding that aim steady after launch for a year in space, then landing," he added.

Lidar data shows dust aloft to a height of 3.5 kilometers (2 miles). The weather at the Phoenix landing site on the second day following landing was sunny with moderate dust, with a high of minus 30 degrees Celsius (minus 22 degrees Fahrenheit) and a low of minus 80 (minus 112 degrees Fahrenheit).

The Phoenix mission is led by Smith at the University of Arizona with project management at JPL and development partnership at Lockheed Martin, Denver.

International contributions come from the Canadian Space Agency; the University of Neuchatel, Switzerland; the universities of Copenhagen and Aarhus, Denmark; Max Planck Institute, Germany; and the Finnish Meteorological Institute.

MEDIA CONTACTS:

Guy Webster 818-354-5011
Jet Propulsion Laboratory, Pasadena, Calif.
guy.webster@jpl.nasa.gov
Dwayne Brown 202-358-1726
NASA Headquarters, Washington
dwayne.c.brown@nasa.gov
Sara Hammond 520-626-1974
University of Arizona, Tucson
shammond@lpl.arizona.edu

Lori Stiles | University of Arizona
Further information:
http://www.nasa.gov/phoenix
http://phoenix.lpl.arizona.edu
http://www.arizona.edu

More articles from Physics and Astronomy:

nachricht Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun
18.04.2019 | University of Warwick

nachricht In vivo super-resolution photoacoustic computed tomography by localization of single dyed droplets
18.04.2019 | Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>