Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magnetic nanoparticles: suitable for cancer therapy?

28.05.2008
A measuring procedure developed in the Physikalisch-Technische Bundesanstalt (PTB) can help to investigate in some detail the behaviour of magnetic nanoparticles which are used for cancer therapy.

Magnetic nanoparticles (with a size of some few to several hundred nanometres) are a new, promising means of fighting cancer. The particles serve as a carrier for drugs: "loaded" with the drugs, the nanoparticles are released into the blood stream, where they move until they come under the influence of a targeting magnetic field which holds them on to the tumour – until the drug has released its active agent.

Besides this pharmaceutical effect, also a physical action can be applied: an electromagnetic a.c. field heats up the accumulated particles so much that they destroy the tumour. Both therapeutic concepts have the advantage of largely avoiding undesired side effects on the healthy tissue.

These procedures have already been successfully been applied in the animal model and have, in part, already been tested on patients. Here it is important to know before application whether the particles tend to aggregate and thus might occlude blood vessels. Information about this can be gained by magnetorelaxometry developed at the PTB. In this procedure, the particles are shortly magnetised by a strong magnetic field in order to measure their relaxation after the switch-off of the field by means of superconducting quantum interferometers, so-called "SQUIDs". Conclusions on their aggregation behaviour in these media can be drawn from measurements of suspensions of nanoparticles in the serum or in whole blood. As an example, it could be shown in this way that certain nanoparticles in the blood serum form clusters with a diameter of up to 200 nm – a clear indication of aggregation, so that these nanoparticles do not appear to be suitable for therapy

At present, the high technical effort connected with the use of helium-cooled magnetic field sensors is still standing in the way of using this method routinely in practice. In a joint project with Braunschweig Technical University supported by the Ministry of Education and Research (BMBF), the procedure is currently being transferred to a simpler technology based on fluxgate magnetometers.

This text in the latest issue of PTB-news (08.2):
http://www.ptb.de/en/publikationen/news/html/news081/artikel/0815.htm
Contact:
Dr. Lutz Trahms, PTB Department 8.2 Biosignals, Phone +4930-3481-7213, e-mail: lutz.trahms@ptb.de

Erika Schow | alfa
Further information:
http://www.ptb.de/en/aktuelles/archiv/presseinfos/pi2008/pitext/pi080527a.html

More articles from Physics and Astronomy:

nachricht Spintronics: Researchers show how to make non-magnetic materials magnetic
06.08.2020 | Martin-Luther-Universität Halle-Wittenberg

nachricht Manifestation of quantum distance in flat band materials
05.08.2020 | Institute for Basic Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ScanCut project completed: laser cutting enables more intricate plug connector designs

Scientists at the Fraunhofer Institute for Laser Technology ILT have come up with a striking new addition to contact stamping technologies in the ERDF research project ScanCut. In collaboration with industry partners from North Rhine-Westphalia, the Aachen-based team of researchers developed a hybrid manufacturing process for the laser cutting of thin-walled metal strips. This new process makes it possible to fabricate even the tiniest details of contact parts in an eco-friendly, high-precision and efficient manner.

Plug connectors are tiny and, at first glance, unremarkable – yet modern vehicles would be unable to function without them. Several thousand plug connectors...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Rare Earth Elements in Norwegian Fjords?

06.08.2020 | Earth Sciences

Anode material for safe batteries with a long cycle life

06.08.2020 | Power and Electrical Engineering

Turning carbon dioxide into liquid fuel

06.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>