Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magnetic nanoparticles: suitable for cancer therapy?

28.05.2008
A measuring procedure developed in the Physikalisch-Technische Bundesanstalt (PTB) can help to investigate in some detail the behaviour of magnetic nanoparticles which are used for cancer therapy.

Magnetic nanoparticles (with a size of some few to several hundred nanometres) are a new, promising means of fighting cancer. The particles serve as a carrier for drugs: "loaded" with the drugs, the nanoparticles are released into the blood stream, where they move until they come under the influence of a targeting magnetic field which holds them on to the tumour – until the drug has released its active agent.

Besides this pharmaceutical effect, also a physical action can be applied: an electromagnetic a.c. field heats up the accumulated particles so much that they destroy the tumour. Both therapeutic concepts have the advantage of largely avoiding undesired side effects on the healthy tissue.

These procedures have already been successfully been applied in the animal model and have, in part, already been tested on patients. Here it is important to know before application whether the particles tend to aggregate and thus might occlude blood vessels. Information about this can be gained by magnetorelaxometry developed at the PTB. In this procedure, the particles are shortly magnetised by a strong magnetic field in order to measure their relaxation after the switch-off of the field by means of superconducting quantum interferometers, so-called "SQUIDs". Conclusions on their aggregation behaviour in these media can be drawn from measurements of suspensions of nanoparticles in the serum or in whole blood. As an example, it could be shown in this way that certain nanoparticles in the blood serum form clusters with a diameter of up to 200 nm – a clear indication of aggregation, so that these nanoparticles do not appear to be suitable for therapy

At present, the high technical effort connected with the use of helium-cooled magnetic field sensors is still standing in the way of using this method routinely in practice. In a joint project with Braunschweig Technical University supported by the Ministry of Education and Research (BMBF), the procedure is currently being transferred to a simpler technology based on fluxgate magnetometers.

This text in the latest issue of PTB-news (08.2):
http://www.ptb.de/en/publikationen/news/html/news081/artikel/0815.htm
Contact:
Dr. Lutz Trahms, PTB Department 8.2 Biosignals, Phone +4930-3481-7213, e-mail: lutz.trahms@ptb.de

Erika Schow | alfa
Further information:
http://www.ptb.de/en/aktuelles/archiv/presseinfos/pi2008/pitext/pi080527a.html

More articles from Physics and Astronomy:

nachricht The magic wavelength of cadmium
16.09.2019 | University of Tokyo

nachricht Tomorrow´s coolants of choice
16.09.2019 | Helmholtz-Zentrum Dresden-Rossendorf

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

Im Focus: The working of a molecular string phone

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Potsdam (both in Germany) and the University of Toronto (Canada) have pieced together a detailed time-lapse movie revealing all the major steps during the catalytic cycle of an enzyme. Surprisingly, the communication between the protein units is accomplished via a water-network akin to a string telephone. This communication is aligned with a ‘breathing’ motion, that is the expansion and contraction of the protein.

This time-lapse sequence of structures reveals dynamic motions as a fundamental element in the molecular foundations of biology.

Im Focus: Milestones on the Way to the Nuclear Clock

Two research teams have succeeded simultaneously in measuring the long-sought Thorium nuclear transition, which enables extremely precise nuclear clocks. TU Wien (Vienna) is part of both teams.

If you want to build the most accurate clock in the world, you need something that "ticks" very fast and extremely precise. In an atomic clock, electrons are...

Im Focus: Graphene sets the stage for the next generation of THz astronomy detectors

Researchers from Chalmers University of Technology have demonstrated a detector made from graphene that could revolutionize the sensors used in next-generation space telescopes. The findings were recently published in the scientific journal Nature Astronomy.

Beyond superconductors, there are few materials that can fulfill the requirements needed for making ultra-sensitive and fast terahertz (THz) detectors for...

Im Focus: Physicists from Stuttgart prove the existence of a supersolid state of matte

A supersolid is a state of matter that can be described in simplified terms as being solid and liquid at the same time. In recent years, extensive efforts have been devoted to the detection of this exotic quantum matter. A research team led by Tilman Pfau and Tim Langen at the 5th Institute of Physics of the University of Stuttgart has succeeded in proving experimentally that the long-sought supersolid state of matter exists. The researchers report their results in Nature magazine.

In our everyday lives, we are familiar with matter existing in three different states: solid, liquid, or gas. However, if matter is cooled down to extremely...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

AI for Laser Technology Conference: optimizing the use of lasers with artificial intelligence

29.08.2019 | Event News

 
Latest News

Too much of a good thing: overactive immune cells trigger inflammation

16.09.2019 | Life Sciences

Scientists create a nanomaterial that is both twisted and untwisted at the same time

16.09.2019 | Materials Sciences

Researchers have identified areas of the retina that change in mild Alzheimer's disease

16.09.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>