Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Expansion of high tech materials

28.05.2008
Industrial applications are ever more frequently demanding materials of highest thermal stability. A precision interferometer has been developed in the Physikalisch-Technische Bundesanstalt (PTB) to exactly measure this property. With this instrument, the change in length can be determined with highest accuracy in an absolute measurement as a function of temperature, time and – if necessary – ambient pressure.
Thermally stable materials play an important role in dimensional metrology and in precision manufacturing. The currently highest requirements on the thermal stability of critical components are made in EUV lithography of reflection masks and mirrors. These are, therefore, based on substrates made of high tech glass/ceramics which are to exhibit a very low thermal expansion coefficient a (a

For the precise characterization of gauge-blockshaped measuring objects made of high tech materials, a precision interferometer was developed with the aim of measuring samples of up to 400 mm length with uncertainties in the sub-nanometer range. From such exact measurements of length, it is possible to calculate the thermal expansion coefficient as a function of the temperature with uncertainties of up to 2 • 10–10 • K–1. Furthermore, it is possible to get quantitative statements regarding the homogeneity of the thermal expansion, compressibility, length relaxations and also the long-term stability of samples.

Length measurements with sub-nm uncertainties demand, besides the application of frequencystabilized lasers, the consideration of influences whose uncertainty contributions are difficult to minimize. For this purpose, various methods have been developed in the PTB in the last few years and these have been integrated into the measuring process. A new autocollimation process is cited as an example and this ensures that the lightwaves reach the surfaces of the measuring objects exactly perpendicularly. The so-called cosine error is hereby lowered to under 10–11 • L. Furthermore during the electronic evaluation of the interference pattern, the exact assignment of the sample position to the camera pixel coordinates is considered. This is particularly important when it comes to measuring objects whose end faces are non-parallel and when the influence of small temperature-induced changes of the lateral sample position can be corrected. By taking the temperature-related influence of the deflection of the end plate wrung to the back into consideration, the precision could be increased further. When taking thermal expansion measurements on typical samples, length measurement uncertainties of 0.25 nm are now achieved.

In a recently completed international comparison measurement, the leading position of the PTB in the determination of thermal expansion coefficients was confirmed. The new possibilities for the precise characterization of high tech materials are already being used intensively by companies working in the fields of optics and precision manufacturing.

This text in the latest issue of PTB-news (08.2):
http://www.ptb.de/en/publikationen/news/html/news081/artikel/0814.htm
Contact:
Dr. Rene Schödel, PTB Working Group 5.44 Interferometry on Prismatic Bodies, Phone (0531) 592-5440, e-mail: rene.schoedel@ptb.de

Erika Schow | alfa
Further information:
http://www.ptb.de/en/aktuelles/archiv/presseinfos/pi2008/pitext/pi080527b.html

More articles from Physics and Astronomy:

nachricht Smallest transistor worldwide switches current with a single atom in solid electrolyte
17.08.2018 | Karlsruher Institut für Technologie (KIT)

nachricht Protecting the power grid: Advanced plasma switch for more efficient transmission
17.08.2018 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>