Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The behemoth has a thick belt

28.05.2008
Astronomers resolve torus around star in another galaxy

Talk about a diet! By resolving, for the first time, features of an individual star in a neighbouring galaxy, ESO's VLT has allowed astronomers to determine that it weighs almost half of what was previously thought, thereby solving the mystery of its existence. The behemoth star is found to be surrounded by a massive and thick torus of gas and dust, and is most likely experiencing unstable, violent mass loss.

WOH G64 is a red supergiant star almost 2 000 times as large as our Sun and is located 163 000 light-years away in the Large Magellanic Cloud, one of the Milky Way's satellite galaxies.

"Previous estimates gave an initial mass of 40 times the mass of the Sun to WOH G64. But this was a real problem as it was way too cold, compared to what theoretical models predict for such a massive star. Its existence couldn't be explained," says Keiichi Ohnaka, who led the work on this object.

New observations, made with ESO's Very Large Telescope Interferometer, conclude that the gas and dust around the star is arranged in a thick ring, rather than a spherical shell, and the star is thus less hidden than had been assumed. This implies that the object is in fact half as luminous as previously thought, and thus, less massive. The astronomers infer that the star started its life with a mass of 25 solar masses. For such a star, the observed temperature is closer to what one would expect.

"Still, the characteristics of the star mean that it may be experiencing a very unstable phase accompanied by heavy mass loss," says co-author Markus Wittkowski from ESO. "We estimate that the belt of gas and dust that surrounds it contains between 3 and 9 solar masses, which means that the star has already lost between one tenth and a third of its initial mass."

To reach this conclusion, the team of astronomers used the MIDI instrument to combine the light collected by three pairs of 8.2-m Unit Telescopes of the VLT. This is the first time that MIDI has been used to study an individual star outside our Galaxy.

The observations allowed the astronomers to clearly resolve the star. Comparisons with models led them to conclude that the star is surrounded by a gigantic, thick torus, expanding from about 15 stellar radii (or 120 times the distance between the Earth and the Sun - 120 AU!) to more than 250 stellar radii (or 30 000 AU!).

"Everything is huge about this system. The star itself is so big that it would fill almost all the space between the Sun and the orbit of Saturn," says Ohnaka. "And the torus that surrounds it is perhaps a light-year across! Still, because it is so far away, only the power of interferometry with the VLT could give us a glimpse on this object. "

Henri Boffin | alfa
Further information:
http://www.eso.org/public/outreach/press-rel/pr-2008/pr-15-08.html

More articles from Physics and Astronomy:

nachricht UNH scientists help provide first-ever views of elusive energy explosion
16.11.2018 | University of New Hampshire

nachricht NASA keeps watch over space explosions
16.11.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>