Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A scientific first: A Supernova Explosion is Observed in Real Time

23.05.2008
As members of a team analyzing data from the first real-time observation of a supernova explosion, Weizmann Institute scientists are finding confirmation for their model of the process and helping to solve unanswered questions.

An ordinary observation with NASA's Swift research satellite recently led to the first real-time sighting of a star in the process of exploding. Astronomers have surveyed thousands of these supernova explosions in the past, but their observations have always begun some time after the main event is underway. The information gained from catching a supernova at the very onset is already being hailed as the 'Rosetta Stone' of star explosion, and it is helping scientists to form a detailed picture of the processes involved.

A typical supernova is preceded by the burn-out of a massive star. When the nuclear fuel at its core runs out, the star collapses under its own weight. The resulting body, now known as a neutron star, is so dense that one teaspoonful of its core material weighs as much as all the humans on earth. This extreme compression is followed by a rebound, creating a shock wave that bounces off the surface of the newly-formed neutron star and rips through its outer, gaseous layers. These layers are ejected, flying off the surface in rapidly expanding shells.

For the last four decades, astronomers have theorized that the explosion is preceded by a burst of x-ray radiation that lasts for several minutes. For the first time, that burst was actually seen - all previous observations had taken place when the star was already an expanding shell of debris, days or even weeks after the explosions' start. Both luck and the Swift satellite's unique design played a role in the discovery. In January of this year, Drs. Alicia Soderberg and Edo Berger of Princeton University, USA, were using the satellite, which measures gamma rays, X rays and ultraviolet light, to observe another supernova in a spiral galaxy in the Lynx constellation, 90 million light-years from Earth. At 9:33 EST, they spotted an extremely bright five-minute X-ray burst and realized it was coming from another location within the same galaxy.

The Princeton scientists immediately assembled a team of 15 research groups around the world to investigate, including Prof. Eli Waxman and Dr. Avishay Gal-Yam of the Weizmann Institute's Physics Faculty. Gal-Yam performed measurements and calculations that enabled the scientific team to cancel out the various disturbances that affect astronomical data, such as radiation-absorbing interstellar dust, which skews observed measurements. The shock-wave eruption and X-ray generation of this supernova explosion went exactly according to the theoretical model that Waxman and Prof. Peter Meszaros of Penn State University had developed earlier. The data showed that the explosion - known as supernova 2008D - is a relatively common type of supernova, and not a rare supernova involving jets of gamma ray radiation.

Already, the observation has provided scientists with valuable new information on supernovae, including the dimensions of the exploding star, the structure of its envelope and the properties of the shock wave that hurls off the star's outer envelope. As they continue to analyze the data, the scientists believe it may help them to solve some of the outstanding puzzles surrounding these types of explosion. For instance, according to mathematical calculations of the forces involved in neutron star collapse, the bouncing shock wave should stall out before it manages to eject the stellar envelope. Clearly, this is not what happens in nature, but clues found in the Swift observations may help researchers to correct the model.

Now that they have observed a supernova from the pre-explosion stage, the scientists are not only gaining a better understanding of the little-understood processes that make these stars explode; they hope their knowledge of the x-ray emissions will enable them to catch more stars that are right on the brink of becoming supernovae.

Prof. Eli Waxman is Head of the Benoziyo Center for Astrophysics and the Albert Einstein Minerva Center for Theoretical Physics.

Dr. Avishai Gal-Yam's research is supported by the Nella and Leon Benoziyo Center for Astrophysics and the William Z. and Eda Bess Novick Young Scientist Fund.

The Weizmann Institute of Science in Rehovot, Israel, is one of the world's top-ranking multidisciplinary research institutions. Noted for its wide-ranging exploration of the natural and exact sciences, the Institute is home to 2,600 scientists, students, technicians and supporting staff. Institute research efforts include the search for new ways of fighting disease and hunger, examining leading questions in mathematics and computer science, probing the physics of matter and the universe, creating novel materials and developing new strategies for protecting the environment.

Weizmann Institute news releases are posted on the World Wide Web at
http://wis-wander.weizmann.ac.il, and are also available at http://www.eurekalert.org.

Batya Greenman | idw
Further information:
http://www.weizmann.ac.il/
http://wis-wander.weizmann.ac.il/site/en/weizman.asp?pi=371&doc_id=5126

More articles from Physics and Astronomy:

nachricht Spintronics: Researchers show how to make non-magnetic materials magnetic
06.08.2020 | Martin-Luther-Universität Halle-Wittenberg

nachricht Manifestation of quantum distance in flat band materials
05.08.2020 | Institute for Basic Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ScanCut project completed: laser cutting enables more intricate plug connector designs

Scientists at the Fraunhofer Institute for Laser Technology ILT have come up with a striking new addition to contact stamping technologies in the ERDF research project ScanCut. In collaboration with industry partners from North Rhine-Westphalia, the Aachen-based team of researchers developed a hybrid manufacturing process for the laser cutting of thin-walled metal strips. This new process makes it possible to fabricate even the tiniest details of contact parts in an eco-friendly, high-precision and efficient manner.

Plug connectors are tiny and, at first glance, unremarkable – yet modern vehicles would be unable to function without them. Several thousand plug connectors...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Rare Earth Elements in Norwegian Fjords?

06.08.2020 | Earth Sciences

Anode material for safe batteries with a long cycle life

06.08.2020 | Power and Electrical Engineering

Turning carbon dioxide into liquid fuel

06.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>