Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists Demonstrate Precise Manipulation of DNA-Drug Interactions

21.05.2008
Mark Williams, Ph.D., Associate Professor of Physics at Northeastern University’s College of Arts in Sciences, and his research team have developed a method using optical tweezers to better understand how those interactions occur.

Being able to target the genetic code to develop an effective treatment of a disease is the ultimate goal for many scientists. Focusing on how the DNA interacts with a potential drug is an important element of DNA therapy research. Mark Williams, Ph.D., Associate Professor of Physics at Northeastern University’s College of Arts and Sciences, and his research team have developed a method using optical tweezers to better understand how those interactions occur.

This research, performed primarily by graduate student Thaya Paramanathan, published in a recent edition of the Journal of the American Chemical Society (vol. 130, p. 3752), has the potential to uncover crucial information about how to target DNA in order to develop therapies for chronic diseases such as cancer and AIDS.

DNA, the structure that holds the human genetic code, is composed of nucleic acid bases pairing up and bonding together to form a double helix. Intercalators are molecules that bind between DNA base pairs and have been found to inhibit cell replication, a highly desired quality for potential drug targets. Novel “threading” intercalators have recently been developed to optimize DNA binding. Due to the strength of these bonds and the slow rate of binding, however, it is hard to study the interactions of these intercalators using normal methods, resulting in a limited availability of data and research options.

To address these issues, Mark Williams and his team stretched single DNA molecules using optical tweezers to better control the interactions between the DNA and the potential drug target molecules.

“By studying this threading mechanism on a single DNA molecule, we were able to directly measure the physical characteristics of the interactions between the DNA and potential DNA binding drugs,” said Williams.

The optical tweezers grab the ends of the DNA strand and stretch it out, allowing for the DNA strands to separate more quickly. When the DNA bases separate, the drug molecule, which is dumbbell-shaped and binds with the DNA in the center of the dumb-bell, slides in between the base pairs. When the bond re-forms between the base pairs, the potential drug molecule remains stuck between the DNA strands that form the double helix, and therefore it has formed a very strong bond.

The observations lead to the understanding of how and under what circumstances these bonds occur, which can help in the development of drug therapies that would inhibit or prevent mutated cells from replicating.

“The ability to precisely quantify and characterize the physical mechanism of this threading intercalation should help to fine-tune the desired DNA binding properties,” added Williams.

About Northeastern

Founded in 1898, Northeastern University is a private research university located in the heart of Boston. Northeastern is a leader in interdisciplinary research, urban engagement, and the integration of classroom learning with real-world experience. The university’s distinctive cooperative education program, where students alternate semesters of full-time study with semesters of paid work in fields relevant to their professional interests and major, is one of the largest and most innovative in the world. The University offers a comprehensive range of undergraduate and graduate programs leading to degrees through the doctorate in six undergraduate colleges, eight graduate schools, and two part-time divisions.

Jenny Eriksen | newswise
Further information:
http://nuweb.neu.edu/mark/
http://www.northeastern.edu

More articles from Physics and Astronomy:

nachricht Spintronics: Researchers show how to make non-magnetic materials magnetic
06.08.2020 | Martin-Luther-Universität Halle-Wittenberg

nachricht Manifestation of quantum distance in flat band materials
05.08.2020 | Institute for Basic Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ScanCut project completed: laser cutting enables more intricate plug connector designs

Scientists at the Fraunhofer Institute for Laser Technology ILT have come up with a striking new addition to contact stamping technologies in the ERDF research project ScanCut. In collaboration with industry partners from North Rhine-Westphalia, the Aachen-based team of researchers developed a hybrid manufacturing process for the laser cutting of thin-walled metal strips. This new process makes it possible to fabricate even the tiniest details of contact parts in an eco-friendly, high-precision and efficient manner.

Plug connectors are tiny and, at first glance, unremarkable – yet modern vehicles would be unable to function without them. Several thousand plug connectors...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Rare Earth Elements in Norwegian Fjords?

06.08.2020 | Earth Sciences

Anode material for safe batteries with a long cycle life

06.08.2020 | Power and Electrical Engineering

Turning carbon dioxide into liquid fuel

06.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>