Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers find youngest supernova remnant in milky way

15.05.2008
An international team of astronomers have found the youngest known supernova remnant in the Galaxy. Using observations made with the Very Large Array (VLA) radio telescope in the US and the orbiting Chandra X-ray observatory, the scientists report that the remnant, G1.9+0.3, is just 150 years old. University of Cambridge scientist Dr Dave Green and colleagues discuss the discovery in a paper to be published in the journal Monthly Notices of the Royal Astronomical Society.

A supernova remnant (SNR) is the material ejected by a supernova, the explosion at the end of the life of a star much more massive than the Sun. In our own Galaxy, the Milky Way, there are about 250 known SNRs and up to now the youngest was thought to be about 340 years old.


Scientists including Dr Green and Dr Stephen Reynolds of North Carolina State University compared an X-ray image of G1.9+0.3 made using the Chandra satellite in 2007 with a radio image made with the VLA in 1985. They found that the SNR expanded considerably over the two decades, indicating it is very young. But the team were not sure whether some of the differences between the X-ray and radio images of G1.9+0.3 simply arose from comparing images made at very different frequencies from very different instruments.

To check their result, the team used the VLA to observe the SNR for a second time so that a direct comparison could be made with the 1985 image. The new observations confirm that G1.9+0.3 is expanding at an unprecedented rate, increasing its size by 15% in the intervening 23 years. Extrapolating backwards in time confirms G1.9+0.3 to be at most 150 years old, which makes it easily the youngest known SNR in our Galaxy and the only one that has been seen at such an early stage of its evolution. Another property of G1.9+0.3 that marks it out as unusual is that, uniquely among Galactic SNRs, it appears to have been increasing in radio brightness over the last few decades.

Although the distance to G1.9+0.3 is not known precisely, it is probably near the centre of our Galaxy. The SNR is obscured by a large amount of gas and dust, which means that Victorian astronomers would not have been able to see the explosion when it took place in the 1850s. Today scientists can observe the X-ray and radio emission from the ongoing aftermath of the explosion, as these penetrate the obscuring material.

Dr Green is delighted to have found such a young SNR. He comments "The discovery that G1.9+0.3 is so young is very exciting. It fits into a large gap in the known ages of supernova remnants, and since it is expanding so quickly, we will be able to follow its evolution over the coming years.”

Robert Massey | alfa
Further information:
http://www.ras.org.uk
http://chandra.harvard.edu/
http://www.nrao.edu/index.php/news/pressresources

More articles from Physics and Astronomy:

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

nachricht Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication
16.07.2018 | Chinese Academy of Sciences Headquarters

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>