Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Supercomputer to Simulate Extreme Stellar Physics

05.05.2008
Robert Fisher and Cal Jordan are among a team of scientists who will expend 22 million computational hours during the next year on one of the world’s most powerful supercomputers, simulating an event that takes less than five seconds.

Fisher and Jordan require such resources in their field of extreme science. Their work at the University of Chicago’s Center for Astrophysical Thermonuclear Flashes explores how the laws of nature unfold in natural phenomena at unimaginably extreme temperatures and pressures. The Blue Gene/P supercomputer at Argonne National Laboratory will serve as one of their primary tools for studying exploding stars.

“The Argonne Blue Gene/P supercomputer is one of the largest and fastest supercomputers in the world,” said Fisher, a Flash Center Research Scientist. “It has massive computational resources that are not available on smaller platforms elsewhere.”

Desktop computers typically contain only one or two processors; Blue Gene/P has more than 160,000 processors. What a desktop computer could accomplish in a thousand years, the Blue Gene/P supercomputer can perform in three days. “It’s a different scale of computation. It’s computation at the cutting edge of science,” Fisher said.

Access to Blue Gene/P, housed at the Argonne Advanced Leadership Computing Facility, was made possible by a time allocation from the U.S. Department of Energy’s Innovative and Novel Computational Impact on Theory and Experiment program. The Flash Center was founded in 1997 with a grant from the National Nuclear Security Administration’s Office of Advanced Simulation and Computing. The NNSA’s Academic Strategic Alliance Program has sustained the Flash Center with funding and computing resources throughout its history.

The support stems from the DOE’s interest in the physics that take place at extremes of concentrated energy, including exploding stars called supernovas. The Flash Center will devote its computer allocation to studying Type Ia supernovas, in which temperatures reach billions of degrees.

A better understanding of Type Ia supernovas is critical to solving the mystery of dark energy, one of the grandest challenges facing today’s cosmologists. Dark energy is somehow causing the universe to expand at an accelerating rate.

Cosmologists discovered dark energy by using Type Ia supernovas as cosmic measuring devices. All Type Ia supernovas display approximately the same brightness, so scientists could assess the distance of the exploding stars’ home galaxies accordingly. Nevertheless, these supernovas display a variation of approximately 15 percent.

“To really understand dark energy, you have to nail this variation to about 1 percent,” said Jordan, a Flash Center Research Associate.

The density of white dwarf stars, from which Type Ia supernovas evolve, is equally extreme. When stars the size of the sun reach the ends of their lives, they have shed most of their mass and leave behind an inert core about the size of the moon. “If one were able to scoop out a cubic centimeter—roughly a teaspoon—of material from that white dwarf, it would weigh a thousand metric tons,” Fisher explained. “These are incredibly dense objects.”

Type Ia supernovas are believed to only occur in binary star systems, those in which two stars orbit one another. When a binary white dwarf has gravitationally pulled enough matter off its companion star, an explosion ensues.

“This takes place over hundreds of millions of years,” Jordan said. “As the white dwarf becomes more and more dense with matter compressing on top of it, an ignition takes place in its core. This ignition burns through the star and eventually leads to a huge explosion.”

The Flash team conducts whole-star simulations on a supercomputer at Lawrence Berkeley National Laboratory in California. At Argonne, the team will perform a related set of simulations. “You can think of them as a nuclear ‘flame in a box’ in a small chunk of the full white dwarf,” Fisher said.

In the simulations at Argonne, the team will analyze how burning occurs in four possible scenarios that lead to Type Ia supernovas. Burning in a white dwarf can occur as a deflagration or as a detonation.

“Imagine a pool of gasoline and throw a match on it. That kind of burning across the pool of gasoline is a deflagration,” Jordan said. “A detonation is simply if you were to light a stick of dynamite and allow it to explode.”

In the Flash Center scenario, deflagration starts off-center of the star’s core. The burning creates a hot bubble of less dense ash that pops out the side due to buoyancy, like a piece of Styrofoam submerged in water. But gravity holds the ash close to the surface of the white dwarf. “This fast-moving ash stays confined to the surface, flows around the white dwarf and collides on the opposite side of breakout,” Jordan said.

The collision triggers a detonation that incinerates the star. There are, however, three other scenarios to consider. “To understand how the simulations relate to the actual supernovae, we have to do more than a thousand different simulations this year to vary the parameters within the models to see how the parameters affect the supernovae,” Jordan said.

Steve N. Koppes | newswise
Further information:
http://news.uchicago.edu/

More articles from Physics and Astronomy:

nachricht ALMA discovers aluminum around young star
17.05.2019 | National Institutes of Natural Sciences

nachricht JQI researchers shed new light on atomic 'wave function'
17.05.2019 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

Im Focus: Recording embryonic development

Scientists develop a molecular recording tool that enables in vivo lineage tracing of embryonic cells

The beginning of new life starts with a fascinating process: A single cell gives rise to progenitor cells that eventually differentiate into the three germ...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Discovering unusual structures from exception using big data and machine learning techniques

17.05.2019 | Materials Sciences

ALMA discovers aluminum around young star

17.05.2019 | Physics and Astronomy

A new iron-based superconductor stabilized by inter-block charger transfer

17.05.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>