Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Supercomputer to Simulate Extreme Stellar Physics

05.05.2008
Robert Fisher and Cal Jordan are among a team of scientists who will expend 22 million computational hours during the next year on one of the world’s most powerful supercomputers, simulating an event that takes less than five seconds.

Fisher and Jordan require such resources in their field of extreme science. Their work at the University of Chicago’s Center for Astrophysical Thermonuclear Flashes explores how the laws of nature unfold in natural phenomena at unimaginably extreme temperatures and pressures. The Blue Gene/P supercomputer at Argonne National Laboratory will serve as one of their primary tools for studying exploding stars.

“The Argonne Blue Gene/P supercomputer is one of the largest and fastest supercomputers in the world,” said Fisher, a Flash Center Research Scientist. “It has massive computational resources that are not available on smaller platforms elsewhere.”

Desktop computers typically contain only one or two processors; Blue Gene/P has more than 160,000 processors. What a desktop computer could accomplish in a thousand years, the Blue Gene/P supercomputer can perform in three days. “It’s a different scale of computation. It’s computation at the cutting edge of science,” Fisher said.

Access to Blue Gene/P, housed at the Argonne Advanced Leadership Computing Facility, was made possible by a time allocation from the U.S. Department of Energy’s Innovative and Novel Computational Impact on Theory and Experiment program. The Flash Center was founded in 1997 with a grant from the National Nuclear Security Administration’s Office of Advanced Simulation and Computing. The NNSA’s Academic Strategic Alliance Program has sustained the Flash Center with funding and computing resources throughout its history.

The support stems from the DOE’s interest in the physics that take place at extremes of concentrated energy, including exploding stars called supernovas. The Flash Center will devote its computer allocation to studying Type Ia supernovas, in which temperatures reach billions of degrees.

A better understanding of Type Ia supernovas is critical to solving the mystery of dark energy, one of the grandest challenges facing today’s cosmologists. Dark energy is somehow causing the universe to expand at an accelerating rate.

Cosmologists discovered dark energy by using Type Ia supernovas as cosmic measuring devices. All Type Ia supernovas display approximately the same brightness, so scientists could assess the distance of the exploding stars’ home galaxies accordingly. Nevertheless, these supernovas display a variation of approximately 15 percent.

“To really understand dark energy, you have to nail this variation to about 1 percent,” said Jordan, a Flash Center Research Associate.

The density of white dwarf stars, from which Type Ia supernovas evolve, is equally extreme. When stars the size of the sun reach the ends of their lives, they have shed most of their mass and leave behind an inert core about the size of the moon. “If one were able to scoop out a cubic centimeter—roughly a teaspoon—of material from that white dwarf, it would weigh a thousand metric tons,” Fisher explained. “These are incredibly dense objects.”

Type Ia supernovas are believed to only occur in binary star systems, those in which two stars orbit one another. When a binary white dwarf has gravitationally pulled enough matter off its companion star, an explosion ensues.

“This takes place over hundreds of millions of years,” Jordan said. “As the white dwarf becomes more and more dense with matter compressing on top of it, an ignition takes place in its core. This ignition burns through the star and eventually leads to a huge explosion.”

The Flash team conducts whole-star simulations on a supercomputer at Lawrence Berkeley National Laboratory in California. At Argonne, the team will perform a related set of simulations. “You can think of them as a nuclear ‘flame in a box’ in a small chunk of the full white dwarf,” Fisher said.

In the simulations at Argonne, the team will analyze how burning occurs in four possible scenarios that lead to Type Ia supernovas. Burning in a white dwarf can occur as a deflagration or as a detonation.

“Imagine a pool of gasoline and throw a match on it. That kind of burning across the pool of gasoline is a deflagration,” Jordan said. “A detonation is simply if you were to light a stick of dynamite and allow it to explode.”

In the Flash Center scenario, deflagration starts off-center of the star’s core. The burning creates a hot bubble of less dense ash that pops out the side due to buoyancy, like a piece of Styrofoam submerged in water. But gravity holds the ash close to the surface of the white dwarf. “This fast-moving ash stays confined to the surface, flows around the white dwarf and collides on the opposite side of breakout,” Jordan said.

The collision triggers a detonation that incinerates the star. There are, however, three other scenarios to consider. “To understand how the simulations relate to the actual supernovae, we have to do more than a thousand different simulations this year to vary the parameters within the models to see how the parameters affect the supernovae,” Jordan said.

Steve N. Koppes | newswise
Further information:
http://news.uchicago.edu/

More articles from Physics and Astronomy:

nachricht Computer model predicts how fracturing metallic glass releases energy at the atomic level
20.07.2018 | American Institute of Physics

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>