Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lasers and milk: The common denominator

02.05.2008
Reading about a "random laser" for the first time, you might wonder whether this term refers to the laser in your CD player which plays the song titles in the random shuffle mode. In physics, however, "random lasers" refer to a class of microlasers which use the principle of random light scattering as an integral part of the laser operation.

In conventional lasers light is trapped between two highly reflecting mirrors where it is amplified by pumping from outside. Only when this amplification process is efficient enough, the laser begins to operate.

After the initiation of the modern study of random lasers by Nabil M. Lawandy (Brown University), it was demonstrated by Hui Cao (Northwestern/Yale) and coworkers that you don't necessarily require elaborate mirrors to confine light long enough for lasing from micron sized devices. All you need to do is to put light into a highly disordered medium where scattering in random directions takes place. This mechanism, similar to the multiple scattering of light which makes a glass of milk look white, can prevent the light from escaping too quickly. If the random medium is optically active, pumping it with energy from outside will result in the emission of coherent light at sharply defined frequencies and in random directions.

"In pratice, random lasers are small beads of micrometer size, too small to be seen by the human eye", says Hakan E. Türeci, a research associate in the Quantum Photonics Group at ETH Zurich, who coauthored the article with Li Ge, Stefan Rotter and A. Douglas Stone at Yale University. "Due to their robustness and ease of manufacture, these lasers are sometimes referred to as "laser paint" and have found various applications, currently commercially available, such as document security and remote sensing. There are envisioned application areas in diagnostic imaging and super-fast displays as well".

Laser theory extended

Conventional laser theory tries to describe the operation of a laser by looking at the resonances of the laser cavity. In a random laser these resonances are, due to the lack of any defining mirrors, however, not at all well defined. The resonances are so closely spaced that they cannot be looked at independently of each other. Türeci and co-workers at Yale University have now extended the conventional laser theory such that it can be applied to random lasers, one of the most exotic type of lasers in existence, as well. In recent experiments it was observed that a specific random laser always shines at the same frequencies, but at intensities which differ strongly from measurement to measurement. With their publication in Science the authors show that this result can be traced back to unusually strong interactions between the laser modes.

Türeci: "Future research in designing novel micro and nanolasers will benefit from our approach, and we are implementing some of these ideas already with experimental collaborators to improve, e.g. power output, directional emission, for different kinds of microlasers."

Roman Klingler | alfa
Further information:
http://www.phys.ethz.ch

More articles from Physics and Astronomy:

nachricht Original kilogram replaced -- new International System of Units (SI) entered into force
22.05.2019 | Forschungsverbund Berlin

nachricht Stellar waltz with dramatic ending
22.05.2019 | University of Bonn

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

Im Focus: Recording embryonic development

Scientists develop a molecular recording tool that enables in vivo lineage tracing of embryonic cells

The beginning of new life starts with a fascinating process: A single cell gives rise to progenitor cells that eventually differentiate into the three germ...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Summit charts a course to uncover the origins of genetic diseases

22.05.2019 | Life Sciences

New study finds distinct microbes living next to corals

22.05.2019 | Life Sciences

Stellar waltz with dramatic ending

22.05.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>