Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Big black holes cook flambeed stellar pancakes

02.05.2008
According to two astrophysicists from Paris Observatory, the fate of stars that venture too close to massive black holes could be even more violent than previously believed. Not only are they crushed by the black hole’s huge gravity, but the process can also trigger a nuclear explosion that tears the star apart from within. In addition, shock waves in the pancake star carry a brief and very high peak of temperature outwards, that could give rise to a new type of X-ray or gamma-ray bursts.

Scientists have long understood that massive black holes lurking in galactic nuclei and weighing millions of Suns can disrupt stars that come too close. Due to intense tidal forces, the black hole’s gravity pulls harder on the nearest part of the star, an imbalance that pulls the star apart over a period of hours, once it gets inside the so-called “tidal radius”.

Now, Matthieu Brassart and Jean-Pierre Luminet of the Observatoire de Paris-Meudon, France, say the strain of these tidal forces can also trigger a nuclear explosion powerful enough to destroy the star from within. They carried out computer simulations of the final moments of such an unfortunate star’s life, as it penetrates deeply into the tidal field of a massive black hole.

When the star gets close enough the black hole (without falling into), the tidal forces flatten it into a pancake shape. Previous studies already performed by Luminet and collaborators twenty years ago had suggested this flattening would increase the density and temperature inside the star enough to trigger intense nuclear reactions that would tear it apart. But other studies had suggested that the picture would be complicated by shock waves generated during the flattening process, and that no nuclear explosion should occur.

The new simulations investigate the effects of shock waves in detail, and find that even when their effects are included, the conditions favour a nuclear explosion which will completely destroy the star, and which will be powerful enough to hurl much of the star’s matter out of the black hole’s reach.

Stellar fireworks

The tidal disruption of stars by black holes may already have been observed by X-ray telescopes such as GALEX, XMM and Chandra, although at a much later stage : several months after the event that rips the star apart, its matter starts swirling into the hole, heats up and releases ultraviolet light and X-rays. However, if pancake stars really do explode, then they could in principle allow these events to be detected at a much earlier stage. Future observatories, such as the Large Synoptic Survey Telescope (LSST), which will detect large numbers of supernovae, could turn up some explosions of this type.

But this might be not the only hazard facing the doomed star. Brassart and Luminet calculated that the shock waves inside the stellar pancake carry a brief (The rate of such "flambeed pancake stars" is estimated to about 0.00001 event per galaxy. Since almost every galaxy – including our own Milky Way – harbors a massive black hole in its centre, and since the universe is transparent to hard X and gamma radiation, several events of this kind per year should be detectable within the full observable universe.

Conclusion

The planned high-energy, all-sky surveys are the best suited to detect more flares of this type because of their large sky coverage. By providing a quick localization of flambeed stellar pancakes, followed by the detection of the corresponding afterglows in the optical, infrared, and radio bands, these missions could bring as much to the understanding of stellar disruptions by black holes as the Beppo-Sax and Swift telescopes did for the comprehension of gamma-ray bursts.

Jean-Pierre Luminet | alfa
Further information:
http://www.obspm.fr/actual/nouvelle/may08/crepe.en.shtml

More articles from Physics and Astronomy:

nachricht Smallest transistor worldwide switches current with a single atom in solid electrolyte
17.08.2018 | Karlsruher Institut für Technologie (KIT)

nachricht Protecting the power grid: Advanced plasma switch for more efficient transmission
17.08.2018 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>