Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Big black holes cook flambeed stellar pancakes

02.05.2008
According to two astrophysicists from Paris Observatory, the fate of stars that venture too close to massive black holes could be even more violent than previously believed. Not only are they crushed by the black hole’s huge gravity, but the process can also trigger a nuclear explosion that tears the star apart from within. In addition, shock waves in the pancake star carry a brief and very high peak of temperature outwards, that could give rise to a new type of X-ray or gamma-ray bursts.

Scientists have long understood that massive black holes lurking in galactic nuclei and weighing millions of Suns can disrupt stars that come too close. Due to intense tidal forces, the black hole’s gravity pulls harder on the nearest part of the star, an imbalance that pulls the star apart over a period of hours, once it gets inside the so-called “tidal radius”.

Now, Matthieu Brassart and Jean-Pierre Luminet of the Observatoire de Paris-Meudon, France, say the strain of these tidal forces can also trigger a nuclear explosion powerful enough to destroy the star from within. They carried out computer simulations of the final moments of such an unfortunate star’s life, as it penetrates deeply into the tidal field of a massive black hole.

When the star gets close enough the black hole (without falling into), the tidal forces flatten it into a pancake shape. Previous studies already performed by Luminet and collaborators twenty years ago had suggested this flattening would increase the density and temperature inside the star enough to trigger intense nuclear reactions that would tear it apart. But other studies had suggested that the picture would be complicated by shock waves generated during the flattening process, and that no nuclear explosion should occur.

The new simulations investigate the effects of shock waves in detail, and find that even when their effects are included, the conditions favour a nuclear explosion which will completely destroy the star, and which will be powerful enough to hurl much of the star’s matter out of the black hole’s reach.

Stellar fireworks

The tidal disruption of stars by black holes may already have been observed by X-ray telescopes such as GALEX, XMM and Chandra, although at a much later stage : several months after the event that rips the star apart, its matter starts swirling into the hole, heats up and releases ultraviolet light and X-rays. However, if pancake stars really do explode, then they could in principle allow these events to be detected at a much earlier stage. Future observatories, such as the Large Synoptic Survey Telescope (LSST), which will detect large numbers of supernovae, could turn up some explosions of this type.

But this might be not the only hazard facing the doomed star. Brassart and Luminet calculated that the shock waves inside the stellar pancake carry a brief (The rate of such "flambeed pancake stars" is estimated to about 0.00001 event per galaxy. Since almost every galaxy – including our own Milky Way – harbors a massive black hole in its centre, and since the universe is transparent to hard X and gamma radiation, several events of this kind per year should be detectable within the full observable universe.

Conclusion

The planned high-energy, all-sky surveys are the best suited to detect more flares of this type because of their large sky coverage. By providing a quick localization of flambeed stellar pancakes, followed by the detection of the corresponding afterglows in the optical, infrared, and radio bands, these missions could bring as much to the understanding of stellar disruptions by black holes as the Beppo-Sax and Swift telescopes did for the comprehension of gamma-ray bursts.

Jean-Pierre Luminet | alfa
Further information:
http://www.obspm.fr/actual/nouvelle/may08/crepe.en.shtml

More articles from Physics and Astronomy:

nachricht Atoms at the photo shoot
03.08.2020 | Humboldt-Universität zu Berlin

nachricht Collisions in the solar system: Bayreuth researchers explain the origins of stony-iron meteorites
03.08.2020 | Universität Bayreuth

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

Im Focus: NYUAD astrophysicist investigates the possibility of life below the surface of Mars

  • A rover expected to explore below the surface of Mars in 2022 has the potential to provide more insights
  • The findings published in Scientific Reports, Springer Nature suggests the presence of traces of water on Mars, raising the question of the possibility of a life-supporting environment

Although no life has been detected on the Martian surface, a new study from astrophysicist and research scientist at the Center for Space Science at NYU Abu...

Im Focus: Manipulating non-magnetic atoms in a chromium halide enables tuning of magnetic properties

New approach creates synthetic layered magnets with unprecedented level of control over their magnetic properties

The magnetic properties of a chromium halide can be tuned by manipulating the non-magnetic atoms in the material, a team, led by Boston College researchers,...

Im Focus: A new method to significantly increase the range and stability of optical tweezers

Scientists of Tomsk Polytechnic University jointly with a team of the V.E. Zuev Institute of Atmospheric Optics of the Siberian Branch of the Russian Academy of Sciences have discovered a method to increase the operation range of optical traps also known

Optical tweezers are a device which uses a laser beam to move micron-sized objects such as living cells, proteins, and molecules. In 2018, the American...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Novel approach improves graphene-based supercapacitors

03.08.2020 | Information Technology

Germany-wide rainfall measurements by utilizing the mobile network

03.08.2020 | Information Technology

Drug discovery: First rational strategy to find molecular glue degraders

03.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>