Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Graphene-based gadgets may be just years away

02.05.2008
Researchers at The University of Manchester have produced tiny liquid crystal devices with electrodes made from graphene – an exciting development that could lead to computer and TV displays based on this technology.

Writing in the American Chemical Society’s journal Nano Letters, Dr Kostya Novoselov and colleagues from The School of Physics and Astronomy and The School of

Computer Science, report on the use of graphene as a transparent conductive coating for electro-optical devices – and show that its high transparency and low resistivity make it ideal for electrodes in liquid crystal devices.

Graphene was discovered at The University of Manchester back in 2004, by Professor Andre Geim FRS and Royal Society Research Fellow Dr Kostya Novoselov. This incredible one-atom-thick gauze of carbon atoms, which resembles chicken wire, has quickly become one of the hottest topics in physics and materials science.

“Graphene is only one atom thick, optically transparent, chemically inert, and an excellent conductor,” says Dr Novoselov, from the Manchester research team.

“These properties seem to make this material an excellent candidate for applications in various electro-optical devices that require conducting but transparent thin films.

We believe graphene should improve the durability and simplify the technology of potential electronic devices that interact with light.”

Prof Geim said: “Transparent conducting films are an essential part of many gadgets including common liquid crystal displays (LCDs) for computers, TVs and mobile phones.

“The underlying technology uses thin metal-oxide films based on indium. But indium is becoming an increasingly expensive commodity and, moreover, its supply is expected to be exhausted within just 10 years.

“Forget about oil – our civilisation will first run out of indium. Scientists have an urgent task on their hands to find new types of conductive transparent films.”

The Manchester research team has now demonstrated highly transparent and highly conductive ultra-thin films that can be produced cheaply by ‘dissolving’ chunks of graphite – an abundant natural resource – into graphene and then spraying the suspension onto a glass surface.

The resulting graphene-based films can be used in LCDs and, to prove the concept, the research team have demonstrated the first liquid crystal devices with graphene electrodes.

Dr Novoselov believes that there are only a few small, incremental steps remain for this technology to reach a mass production stage. “Graphene-based LCD products could appear in shops as soon as in a few years”, he adds.

A research team from the Max Planck Institute for Polymer Research in Germany recently reported in Nano Letters how they had used graphene-based films to create transparent electrodes for solar cells (1).

But the German team used a different technology for obtaining graphene films, which involved several extra steps.

The Manchester team says the films they have developed are much simpler to produce, and they can be used not only in LCDs but also in solar cells.

Jon Keighren | alfa
Further information:
http://www.manchester.ac.uk

More articles from Physics and Astronomy:

nachricht Computer model predicts how fracturing metallic glass releases energy at the atomic level
20.07.2018 | American Institute of Physics

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>