Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hebrew University, Berkeley researchers develop method for transmitting medical images via cell phones

29.04.2008
A process to transmit medical images via cellular phones that has been developed by a Hebrew University of Jerusalem researcher has the potential to provide sophisticated radiological diagnoses and treatment to the majority of the world’s population lacking access to such technology.

This would include millions in developing nations as well as those in rural areas of developed countries who live considerable distances from modern medical centers.

Prof. Boris Rubinsky has demonstrated the feasibility of his new concept that can replace current systems -- which are based on conventional, stand-alone medical imaging devices -- with a new medical imaging system consisting of two independent components connected through cellular phone technology. The concept could be developed with various medical imaging modalities. This new technique is described in the latest online issue of the journal, Public Library of Science ONE (PLoS ONE).

Rubinsky is head of the Research Center for Research in Bioengineering in the Service of Humanity and Society at the Benin School of Computer Science and Engineering at the Hebrew University of Jerusalem and is also a professor of bioengineering and mechanical engineering at the University of California, Berkeley. Working with him on this project were Yair Granot and Antoni Ivorra, both of the Biophysics Graduate Group of the latter institution.

Their invention is jointly patented and owned by Yissum, the Hebrew University’s Technology Transfer Company, and by the University of California, Berkeley. Commercialization efforts will be made by Yissum and by Berkeley's technology transfer organization.

According to the World Health Organization, some three-quarters of the world's population has no access to ultrasounds, X-rays, magnetic resonance images and other medical imaging technology used for a wide range of applications, from detecting tumors to confirming signs of active tuberculosis infections to monitoring the health of developing fetuses during pregnancy.

The conventional medical imaging systems in use today -- self-contained units combining data acquisition hardware with software processing hardware and imaging display -- are expensive devices demanding sensitive handling and maintenance and extensive user training. Only those treatment centers with the required financial and manpower resources are usually able to acquire and utilize them. Even when such equipment does exist in developing countries, it is often not in use because it is too sophisticated or in disrepair or because the health personnel are not trained to use it, said Rubinsky.

"Imaging is considered one of the most important achievements in modern medicine. Diagnosis and treatment of an estimated 20 percent of diseases would benefit from medical imaging, yet this advancement has been out of reach for millions of people in the world because the equipment is too costly to maintain. Our system would make imaging technology inexpensive and accessible for these underserved populations," said Rubinsky.

Under the new technology developed by Rubinsky, an independent data acquisition device (DAD) at a remote patient site that is simple with limited controls and no image display capability would be connected via cellular phone technology with an advanced image reconstruction and hardware control multiserver unit at a central site (which can be anywhere in the world).

The cellular phone technology transmits unprocessed, raw data from the patient site DAD to the cutting- edge central facility that has the sophisticated software and hardware required for image reconstruction. This data is then returned from the central facility to the cellular phone at the DAD site in the form of an image and displayed on its screen. "The DAD can be made with off-the-shelf parts that somebody with basic technical training can operate,” Rubinsky noted.

The fact that the image itself is produced in a centralized location and not on the measurement device has the potential to make technological advances in medical imaging processing continuously available to remote areas of the world, which despite their lack of sophisticated equipment in general often do have cell phone communication. (Indeed, it is estimated that more than 60 percent of all cell phones currently in use in the world are in developing countries.)

Rubinsky stresses the key economic benefits of this new method: By simplifying the apparatus at the patient site, it reduces the cost of medical imaging devices in general. It also removes the need for advanced imaging training of the personnel at the patient site.

The researchers chose electrical impedance tomography (EIT) to demonstrate the feasibility of using cell phones in medical imaging. EIT is based upon the principle that diseased tissue transmits electrical currents differently from healthy tissue. The difference in resistance from electrical currents is translated into an image, which can be transmitted via cell phone technology.

Utilizing commercially available parts, the research team built a simple data acquisition device for the experiment. The device had 32 stainless steel electrodes – half to inject the electrical current and the other half to measure the voltage – connected to a gel-filled container that simulated breast tissue with a tumor.

A total of 225 voltage measurements were taken and uploaded to a cell phone, which was hooked up to the device with a USB cable. The cell phone was then used to dial into a powerful central computer that contained software to process the packet of raw data that was transmitted. An image was then reconstructed and sent back to the cell phone for viewing. The researchers verified that the simulated tumor was clearly visible in the image, demonstrating the proof-of-principle that this system is feasible.

The work on this project was supported by the National Center for Research Resources at the U.S. National Institutes of Health, the Israel Science Foundation and Florida Hospital in Orlando. Research is continuing to further develop the technology with various imaging modalities.

Jerry Barach | Hebrew University
Further information:
http://www.huji.ac.il

More articles from Physics and Astronomy:

nachricht Researchers discover surprising quantum effect in hard disk drive material
26.04.2019 | DOE/Argonne National Laboratory

nachricht Unprecedented insight into two-dimensional magnets using diamond quantum sensors
26.04.2019 | Universität Basel

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unprecedented insight into two-dimensional magnets using diamond quantum sensors

For the first time, physicists at the University of Basel have succeeded in measuring the magnetic properties of atomically thin van der Waals materials on the nanoscale. They used diamond quantum sensors to determine the strength of the magnetization of individual atomic layers of the material chromium triiodide. In addition, they found a long-sought explanation for the unusual magnetic properties of the material. The journal Science has published the findings.

The use of atomically thin, two-dimensional van der Waals materials promises innovations in numerous fields in science and technology. Scientists around the...

Im Focus: Full speed ahead for SmartEEs at Automotive Interiors Expo 2019

Flexible, organic and printed electronics conquer everyday life. The forecasts for growth promise increasing markets and opportunities for the industry. In Europe, top institutions and companies are engaged in research and further development of these technologies for tomorrow's markets and applications. However, access by SMEs is difficult. The European project SmartEEs - Smart Emerging Electronics Servicing works on the establishment of a European innovation network, which supports both the access to competences as well as the support of the enterprises with the assumption of innovations and the progress up to the commercialization.

It surrounds us and almost unconsciously accompanies us through everyday life - printed electronics. It starts with smart labels or RFID tags in clothing, we...

Im Focus: Energy-saving new LED phosphor

The human eye is particularly sensitive to green, but less sensitive to blue and red. Chemists led by Hubert Huppertz at the University of Innsbruck have now developed a new red phosphor whose light is well perceived by the eye. This increases the light yield of white LEDs by around one sixth, which can significantly improve the energy efficiency of lighting systems.

Light emitting diodes or LEDs are only able to produce light of a certain colour. However, white light can be created using different colour mixing processes.

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...
All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

Researchers discover surprising quantum effect in hard disk drive material

26.04.2019 | Physics and Astronomy

Hopkins researchers ID neurotransmitter that helps cancers progress

26.04.2019 | Life Sciences

Unprecedented insight into two-dimensional magnets using diamond quantum sensors

26.04.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>