Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New insights into open string theory

24.06.2002


Theoretical physicist Lennaert Huiszoon has described a new family of strings in research conducted at the National Institute for Nuclear Physics and High Energy Physics. He investigated so-called open strings which can describe elementary particles with a strong interaction.



With string theory, physicists are trying to construct a unifying theory for gravity and quantum mechanics. The theory describes extremely heavy and very small objects such as the universe shortly after the Big Bang or black holes. According to string theory our universe has ten dimensions: three spatial dimensions, one time dimension and six dimensions which are possibly rolled up into thin cylinders.

One of the problems of string theory is that five different versions of it exist! Four of these are theories with closed strings, which can be visualised with elastic bands that move in space-time. The fifth theory has open strings, which can be visualised with elastic bands cut open. In string theory the physics is limited to the splitting and joining of strings. This is the interaction between elementary particles. The greater the number of branches, the stronger the interaction between the particles. To make the calculations feasible, string theorists only examine weak interactions, in other words strings with few branches.


Since 1994 it has been known that one of the closed string theories with strong interactions is exactly the same as the open string theory with weak interactions. By investigating the open string theory, the strong interaction can be described without endlessly complicated calculations. A lot of research concentrates on linking the various string theories. It is thought that they are all special variations of the same theory.

The research into the open strings particularly concentrates on the spaces in which the edges of the strings (the start and endpoint of the cut open elastic band) can move. Lennaert Huiszoon carried out mathematical research into these edge spaces. The spaces are called D-branes after the mathematician Dirichlet.

The physicist suspects that our universe is a four-dimensional D-brane. To prove this a D-brane must be found which has all the properties of the universe: the relatively flat structure of the four- dimensional space time and all elementary particles, with the correct charge, spin and mass.

The physicist Huiszoon limited himself to strings in simple symmetrical spaces, so called group spaces. In the flat surface a circle is a group space and in three dimensions a sphere is a group space. In higher dimensions these group spaces become more complex. Using a new mathematical method he demonstrated that in these group spaces, the ends of the strings can only move in very specific lines or surfaces. In subsequent research the physicist hopes to find D-branes that can actually describe the universe.

Michel Philippens | EurekAlert!

More articles from Physics and Astronomy:

nachricht UNH scientists help provide first-ever views of elusive energy explosion
16.11.2018 | University of New Hampshire

nachricht NASA keeps watch over space explosions
16.11.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

New materials: Growing polymer pelts

19.11.2018 | Materials Sciences

Earthquake researchers finalists for supercomputing prize

19.11.2018 | Information Technology

Controlling organ growth with light

19.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>