Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newly discovered galaxy cluster in early stage of formation is farthest ever identified

02.04.2008
More than 11 billion light years away, galaxies illuminate evolution of universe

UC Irvine scientists have discovered a cluster of galaxies in a very early stage of formation that is 11.4 billion light years from Earth – the farthest of its kind ever to be detected. These galaxies are so distant that the universe was in its infancy when their light was emitted.

The galaxy proto-cluster, named LBG-2377, is giving scientists an unprecedented look at galaxy formation and how the universe has evolved. Before this discovery, the farthest known event like this was approximately 9 billion light years away.

“When you observe objects this far away, you are actually seeing the universe as it was a very long time ago,” said Jeff Cooke, a McCue Postdoctoral Fellow in physics and astronomy at UCI and lead author of this study. “It is as if a timeline is just sitting out there in front of you. These galaxies represent what the universe looked like well before the Earth existed.”

This research is reported in the online bulletin astro-ph.

Using the Keck Telescope in Hawaii, Cooke detected LBG-2377 while looking for single galaxies. At first, it appeared to be a bright, single object. But after analyzing the wavelengths of its light (galaxies emit light with telltale colors) he discovered it was three galaxies merging together, and likely two additional smaller galaxies.

Scientists use light to look back in time. Because light takes a measurable amount of time to travel, detecting it on Earth today allows scientists to view the source as it was billions of years ago. In the case of LBG-2377, scientists believe the light has been traveling for 11.4 billion years, beginning just a few billion years after the Big Bang when the universe was only 15 percent of its current age. By comparison, the Earth was formed about 4.5 billion years ago.

The process of galaxy formation largely is a mystery. Current theory is that large galaxies formed over time from the interaction and merging of smaller galaxies. This process began more than 12 billion years ago, shortly after the Big Bang. Scientists have observed galaxies merging over a large range of distances and time, providing hard evidence to reinforce the theory. However, using current technology, it is difficult to detect this process at the most extreme distances, when galaxy formation was in its infancy.

Scientists believe galaxy clusters form in a similar manner. As galaxies congregate and interact in large, dense regions of space, the cluster grows with time. Witnessing this process first-hand helps scientists confirm their theory and deepen their understanding of the universe. Galaxy clusters can be detected at extreme distances with current technology because they are bright, but they are difficult to find.

Clusters closer to Earth contain upwards of 1,000 galaxies. Our Milky Way galaxy belongs to a lesser grouping of galaxies called the Local Group, which contains more than 35 galaxies, but only a few bright ones.

“We believe LBG-2377 is a seed that eventually will grow into a massive galaxy cluster,” said James Bullock, director of the Center for Cosmology at UCI and a study co-author.

“Our finding suggests that this is a monster structure being born in a very bright, catastrophic event with a lot of gas and matter collapsing at once,” Bullock said. “We are not just seeing one solitary galaxy. We are seeing a bunch of bright galaxies coming together at the dawn of structure formation in the universe.”

Scientists Elizabeth Barton and Kyle Stewart of UCI, along with Arthur Wolfe of the University of California, San Diego, worked on this study. The research was funded by a Gary McCue Postdoctoral Fellowship and the National Science Foundation.

About the University of California, Irvine: The University of California, Irvine is a top-ranked university dedicated to research, scholarship and community service. Founded in 1965, UCI is among the fastest-growing University of California campuses, with more than 27,000 undergraduate and graduate students, and nearly 2,000 faculty members. The third-largest employer in dynamic Orange County, UCI contributes an annual economic impact of $3.6 billion. For more UCI news, visit www.today.uci.edu.

News Radio: UCI maintains on campus an ISDN line for conducting interviews with its faculty and experts. The use of this line is available free-of-charge to radio news programs/stations who wish to interview UCI faculty and experts. Use of the ISDN line is subject to availability and approval by the university.

Jennifer Fitzenberger | EurekAlert!
Further information:
http://www.uci.edu

More articles from Physics and Astronomy:

nachricht UNH scientists help provide first-ever views of elusive energy explosion
16.11.2018 | University of New Hampshire

nachricht NASA keeps watch over space explosions
16.11.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>