Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The (Super)Wasp Factory Finds 10 New Planets In The Last 6 Months

01.04.2008
In the last 6 months an international team of astronomers have used two batteries of cameras, one in the Canary Islands and one in South Africa, to discover 10 new planets in orbit around other stars (commonly known as extrasolar planets).

The results from the Wide Area Search for Planets (SuperWASP) will be announced by team member Dr Don Pollacco of Queen’s University Belfast, in his talk at the RAS National Astronomy Meeting (NAM 2008) on Tuesday 1 April.

Scientists have found more than 270 extrasolar planets since the first one was discovered in the early 1990s. Most of these are detected through their gravitational influence on the star they orbit – as it moves the planet pulls on the star, tugging it back and forth. However, making these discoveries depends on looking at each star over a period of weeks or months and so the pace of discovery is fairly slow.

SuperWASP uses a different method. The two sets of cameras watch for events known as transits, where a planet passes directly in front of a star and blocks out some of the star’s light, so from the Earth the star temporarily appears a little fainter. The SuperWASP cameras work as robots, surveying a large area of the sky at once and each night astronomers have data from millions of stars that they can check for transits and hence planets. The transit method also allows scientists to deduce the size and mass of each planet.

Each possible planet found using SuperWASP is then observed by astronomers working at the Nordic Optical Telescope on La Palma, the Swiss Euler Telescope in Chile and the Observatoire de Haute Provence in southern France, who use precision instruments to confirm or reject the discovery.

45 planets have now been discovered using the transit method, and since they started operation in 2004 the SuperWASP cameras have found 15 of them – making them by far the most successful discovery instruments in the world. The SuperWASP planets have masses between a middleweight 0.5 and a huge 8.3 times that of Jupiter, the largest planet in our Solar System. A number of these new worlds are quite exotic. For example, a year on WASP-12B (its orbital period) is just 1.1 days. The planet is so close to its star that its daytime temperature could reach a searing 2300 degrees Celsius.

Dr Pollacco is delighted with the results. “SuperWASP is now a planet-finding production line and will revolutionise the detection of large planets and our understanding of how they were formed. It’s a great triumph for European astronomers.”

FURTHER INFORMATION (INCLUDING IMAGES):

SuperWASP
Project website
http://www.superwasp.org
Images of the SuperWASP Cameras
1)http://star.pst.qub.ac.uk/~dlp/SWASP_1.jpg - a close up of the 8 SuperWASP-North cameras.
2)http://star.pst.qub.ac.uk/~dlp/SWASP_2.jpg - an aerial view of the SuperWASP-North cameras (courtesy of Damon Hart-Davis, http://d.hd.org/).

3)http://star.pst.qub.ac.uk/~dlp/SWASP_3.jpg - the SuperWASP-South instrument.

Image of the Euler (Swiss) Telescope dome
http://www.cosmograil.org/images/euler-dome.jpg
Image of the SOPHIE spectrograph at the Observatoire de Haute Provence
http://www.obs-hp.fr/www/guide/sophie/sophie.html
RAS National Astronomy Meeting
http://nam2008.qub.ac.uk
RAS home page
http://www.ras.org.uk

Robert Massey | alfa
Further information:
http://www.ras.org.uk
http://nam2008.qub.ac.uk

More articles from Physics and Astronomy:

nachricht The taming of the light screw
22.03.2019 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Magnetic micro-boats
21.03.2019 | Max-Planck-Institut für Polymerforschung

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>