Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Is Graphene the New Silicon?

31.03.2008
Electrons travel through extremely thin form of graphite with little resistivity

Research results from University of Maryland physicists show that graphene, a new material that combines aspects of semiconductors and metals, could be a leading candidate to replace silicon in applications ranging from high-speed computer chips to biochemical sensors.

The research, funded by the National Science Foundation (NSF) and published online in the journal Nature Nanotechnolgy, reveals that graphene conducts electricity at room temperature with less intrinsic resistance than any other known material.

"Graphene is one of the materials being considered as a potential replacement of silicon for future computing," said NSF Program Manager Charles Ying. "The recent results obtained by the University of Maryland scientists provide directions to achieve high-electron speed in graphene near room temperature, which is critically important for practical applications."

Intrinsic resistance results from the unavoidable lattice vibrations in a material when the temperature is greater than absolute zero. The intrinsic resistance determines a material's mobility, or the speed at which an electrons move when an electric field is applied to the material. The very high mobility of graphene makes it promising for applications in which transistors must switch extremely fast, such as in the processing of extremely high frequency signals. If other extrinsic factors that limit mobility in graphene, such as impurities and lattice vibrations in the substrate on which graphene sits, could be eliminated, the intrinsic mobility in graphene would be higher than any other known material, and more than 100 times higher than silicon.

Graphene is also a very promising material for chemical and biochemical sensing applications in which an electrical signal from, for instance, a molecule adsorbed on the sensing device, is translated into an electrical signal by changing the conductivity of the device. The low resistivity and extremely thin nature of graphene also holds promise for applications in thin, mechanically tough, electrically conducting transparent films. Such films are sorely needed in a variety of electronics applications, from touch screens to photovoltaic cells.

Principal investigator Michael Fuhrer of the University of Maryland's Center for Nanophysics and Advanced Materials and the Maryland NanoCenter, said the electrical current in graphene is carried by only a few electrons moving much faster than the electrons in a metal like silver. "Our current samples of graphene are fairly 'dirty' due to some extraneous sources of resistivity," Fuhrer said. "Once we remove that dirt, graphene, at room temperature, should have about 35 percent less resistivity than silver, the lowest resistivity material known at room temperature."

Media Contacts
Diane Banegas, National Science Foundation (703) 292-4489 dbanegas@nsf.gov
Lee Tune, University of Maryland (301) 405-4679 ltune@accmail.umd.edu
Program Contacts
Charles Ying, National Science Foundation (703) 292-8428 cying@nsf.gov
Principal Investigators
Michael Fuhrer, University of Maryland (301) 405-6143 mfuhrer@umd.edu
Related Websites
University of Maryland news release: http://www.newsdesk.umd.edu/scitech/release.cfm?ArticleID=1621

The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering, with an annual budget of $5.92 billion. NSF funds reach all 50 states through grants to over 1,700 universities and institutions. Each year, NSF receives about 42,000 competitive requests for funding, and makes over 10,000 new funding awards. The NSF also awards over $400 million in professional and service contracts yearly.

Diane Banegas | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Physics and Astronomy:

nachricht First radio detection of an extrasolar planetary system around a main-sequence star
04.08.2020 | Max-Planck-Institut für Radioastronomie

nachricht The art of making tiny holes
04.08.2020 | Vienna University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

Im Focus: NYUAD astrophysicist investigates the possibility of life below the surface of Mars

  • A rover expected to explore below the surface of Mars in 2022 has the potential to provide more insights
  • The findings published in Scientific Reports, Springer Nature suggests the presence of traces of water on Mars, raising the question of the possibility of a life-supporting environment

Although no life has been detected on the Martian surface, a new study from astrophysicist and research scientist at the Center for Space Science at NYU Abu...

Im Focus: Manipulating non-magnetic atoms in a chromium halide enables tuning of magnetic properties

New approach creates synthetic layered magnets with unprecedented level of control over their magnetic properties

The magnetic properties of a chromium halide can be tuned by manipulating the non-magnetic atoms in the material, a team, led by Boston College researchers,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

First radio detection of an extrasolar planetary system around a main-sequence star

04.08.2020 | Physics and Astronomy

The art of making tiny holes

04.08.2020 | Physics and Astronomy

Early Mars was covered in ice sheets, not flowing rivers

04.08.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>