New superconducting state verified in experiments

Novel experiments on organic superconductors revealed a new superconducting phase between the normal conducting and the superconducting state, which was predicted in theory already in 1964. Scientists of the Universities of Geneva/Switzerland, Braunschweig/Germany, Osaka/Japan, and of the Grenoble High Magnetic Field Laboratory in France as well as of the Dresden High Magnetic Field Laboratory of the Forschungszentrum Dresden-Rossendorf were involved in these recent investigations.

Superconductors have no electrical resistance at low temperatures. They are for example applied for magnet coils in magnetic resonance scanners or in particle accelerators. Each superconducting material becomes a normal conductor beyond a certain magnetic field. However, for some materials a new superconducting hybrid phase between the normal and the superconducting state occurs in high magnetic fields and at low temperatures. In this phase, parts of the material stay superconducting whereas other parts turn into the normal-conducting state. Due to this hybrid state the superconductivity can survive also in very high magnetic fields. This state preferably appears in stacked materials that consist of ultra-thin conducting and insulating layers.

Prof. Peter Fulde from the Max Planck Institute for the Physics of Complex Systems in Dresden and Prof. Richard Ferrell predicted the existence of this special superconducting state in 1964. Already at that time it was characterized by a spatial modulation of the superconductivity. At about the same time, two further researchers independently predicted the same phase. Therefore, the state is called Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state.

First successful experiments on an organic superconductor were performed in static magnetic fields at the Grenoble High Magnetic Field Laboratory in 2007. This material was expected to become a normal conductor at about 22 Tesla (Tesla is the unit for the magnetic flux density and a measure for the strength of the magnetic field). But if the magnetic field is applied parallel to the organic molecule layers the superconductivity can survive also in much higher fields due to the formation of the hybrid phase. The results have been published in ‘Physical Review Letters’.

Recently, a second series of experiments has been finished. Again, researchers of the Dresden High Magnetic Field Laboratory at the Forschungszentrum Dresden Rossendorf contributed to these investigations. The hybrid phase was investigated with another method in more detail and also at lower temperatures. Thus, it was possible to observe superconductivity on that material in high magnetic fields up to 32 Tesla.

Media Contact

Christine Bohnet alfa

More Information:

http://www.fzd.de

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

High-energy-density aqueous battery based on halogen multi-electron transfer

Traditional non-aqueous lithium-ion batteries have a high energy density, but their safety is compromised due to the flammable organic electrolytes they utilize. Aqueous batteries use water as the solvent for…

First-ever combined heart pump and pig kidney transplant

…gives new hope to patient with terminal illness. Surgeons at NYU Langone Health performed the first-ever combined mechanical heart pump and gene-edited pig kidney transplant surgery in a 54-year-old woman…

Biophysics: Testing how well biomarkers work

LMU researchers have developed a method to determine how reliably target proteins can be labeled using super-resolution fluorescence microscopy. Modern microscopy techniques make it possible to examine the inner workings…

Partners & Sponsors