Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Death of massive star creates brightest burst ever seen

25.03.2008
Astronomers have found by far the most distant naked-eye object ever seen.

Gamma-Ray Bursts are the most powerful explosive events in the Universe. They occur in far-off galaxies and so are usually faint. But on the morning of March 19th 2008 the Swift satellite found a burst which was so bright it could have been seen without binoculars or a telescope even though it was seven thousand times further away than the Andromeda galaxy.

The burst was discovered by the Swift satellite on a fantastic day for GRB hunters. Swift typically finds only two a week; but for the first time Swift found five bursts within 24 hours. The second burst of the day is the new record holder. The enormous energy released in the explosion – brighter than the light from all of the stars in five million Milky Way Galaxies – was caused by the death of a massive star which collapsed to form a black hole.

Dr. Julian Osborne of the University of Leicester, lead investigator for the Swift UK Science Data Centre, said “It’s great to find so many GRBs in one day, and the discovery of the brightest burst ever seen will allow us to explore this incredible explosion in exquisite detail.”

The location of the burst was rapidly pinpointed using the UK-built X-ray and Optical cameras on Swift. Dr. Paul O’Brien, also of the University of Leicester and a member of the Swift Science Team said, “The explosion happened at a distance of over twenty billion light years from Earth. To detect a naked eye object from such a distance really is extraordinary.”

Astronomers around the world are now observing the decaying glow from this burst as it fades away. These include UK teams from the Universities of Leicester, Warwick and Hertfordshire using the Gemini-North Telescope in Hawaii and the Liverpool John Moores University using the Liverpool Telescope on La Palma in the Canary Islands.

Professor Nial Tanvir, of the University of Leicester, said: “Our Gemini observations allowed us to measure the distance to the GRB, and to investigate the behaviour of gas close to the burst as it was blasted by the energy of the explosion”.

Ather Mirza | alfa
Further information:
http://www.le.ac.uk

More articles from Physics and Astronomy:

nachricht New method gives microscope a boost in resolution
10.12.2018 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

nachricht A new 'spin' on kagome lattices
10.12.2018 | Boston College

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Small but ver­sat­ile; key play­ers in the mar­ine ni­tro­gen cycle can util­ize cy­anate and urea

10.12.2018 | Life Sciences

New method gives microscope a boost in resolution

10.12.2018 | Physics and Astronomy

Carnegie Mellon researchers probe hydrogen bonds using new technique

10.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>