Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Algorithm finds the network - for genes or the Internet

19.03.2008
Human diseases and social networks seem to have little in common. However, at the crux of these two lies a network, communities within the network, and farther even, substructures of the communities.

In a recent paper in Physical Review E 77:016104 (2008), Weixiong Zhang, Ph.D., Washington University associate professor of computer science and engineering and of genetics, along with his Ph.D. student, Jianhua Ruan, published an algorithm (a recipe of computer instructions) to automatically identify communities and their subtle structures in various networks.

Many complex systems can be represented as networks, Zhang said, including the genetic networks he studies, social networks and the Internet itself. The community structure of networks features a natural division in which the vertices in each subnetwork are highly involved with each other, though connected less strongly with the rest of the network. Communities are relatively independent of one another structurally, but researchers think that each community may correspond to a fundamental functional unit. A community in a genetic network usually contains genes with similar functions, just as a community on the World Wide Web often corresponds to Web pages on similar topics.

All Zhang and Ruan need are data. Their algorithm is more scalable than existing similar algorithms and can detect communities at a finer scale and with a higher accuracy. One impact of having such a computational biology tool is found in the genomics field. Using this tool, researchers may be better able to identify and understand communities of genes and their networks as well as how they cooperate in causing diseases, such as sepsis, virus infections, cancer and Alzheimer's disease.

Versatile math tool

Zhang and Ruan's algorithm is so versatile that it has been applied to identify the community structure of a network of co-expressed genes involved in bacterial sepsis.

"This is a tool not only for biological research, but also for sociological research," Zhang said. It can determine, for instance, how people interact in social networks and how scientists collaborate in scientific research.

In biological systems there are lots of communities with many proteins involved to form complexes. "We can use this tool to identify structures embedded in the data," Zhang said. "We've identified the substructures of three different RNA polymerase complexes from noisy data, for instance, which are crucial for gene transcription."

Zhang began his computer science career as a specialist in artificial intelligence, but in recent years he has focused more on computational biology. His goal is to use computational means to solve some basic biology problems and those related to human diseases. For example, his group studied a basic problem of the transcription mechanism of microRNAs, which are small, noncoding RNAs that regulate the development and stress responses of nearly all eukaryotic species that have been studied. Using machine learning techniques, Zhang and his collaborators showed that almost all intergenic microRNA genes in four model species, human, mouse, rice and mustard plant (Arabidopsis), are transcribed by RNA polymerase II, which transcribes protein-coding genes. The results were published in PLoS Computational Biology, 3(3):e37 (2007).

Multidisciplinary research that combines computational approaches with biological data is a hallmark of research themes in Zhang's group. As another example, in a paper published in Genome Biology, 7(6):R49 (2006), Zhang and his Ph.D. student, Guandong Wang, developed an algorithm called WordSpy that identifies cis-regulatory elements — short DNA sequences that are critical to the regulation of gene expression — from a large amount of genome sequences.

Stealth from the ancient Greeks

WordSpy was inspired by an old information-hiding technique called stegography, which can be traced back to ancient Greece. As such, their method can be used to analyze not only genomic sequences, but also natural languages. In fact, their method has been extended to segment words and phrases in Chinese.

Aside from studying networks, Zhang also has formed a broad network of collaborations with scientists across the WUSTL campus and outside of the university. The problems he studies are diverse, ranging from stress responses and virus infection in plants, such as rice, to human diseases, including Alzheimer's disease, herpes virus infection, sepsis, cardiac hypertrophy, lung cancer and lung transplantation. The computational tools his group has developed are helping him and his collaborators come to grips with how perturbation to gene expression can lead to complex traits and human diseases as well as how microRNAs regulate gene expression.

Zhang recently was awarded a grant from the Alzheimer's Association to develop computational systems biology methods for analyzing gene expression perturbation in diseased brains. He has been collaborating with scientists in the Washington University School of Medicine and Scripps Institute in La Jolla, Calif., to study roughly 30 postmortem brain samples of people who died from Alzheimer's disease.

"I'm interested in modeling gene expression perturbation in diseased brains and am looking for the genetic signature," Zhang said. "Due to the complexity of Alzheimer's disease, we are developing other tools. It's a polygenic disease, with a lot of genes at work. I'm sure we'll find that a network is involved."

Wexiong Zhang | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Physics and Astronomy:

nachricht When fluid flows almost as fast as light -- with quantum rotation
22.06.2018 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

nachricht Thermal Radiation from Tiny Particles
22.06.2018 | Universität Greifswald

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>