Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A sub-femtosecond stop watch for 'photon finish' races

17.03.2008
Using a system that can compare the travel times of two photons with sub-femtosecond precision, scientists at the Joint Quantum Institute (a partnership of the National Institute of Standards and Technology (NIST) and the University of Maryland) and Georgetown University have found a remarkably large difference in the time it takes photons to pass through nearly identical stacks of materials with different arrangements of refractive layers.

The technique, described at the annual March Meeting of the American Physical Society,* ultimately could provide an empirical answer to a long-standing puzzle over how fast light crosses narrow gaps that do not permit the passage of conventional electromagnetic waves.

Alan Migdall and his colleagues set up a race course using “correlated” pairs of photons—indistinguishable photons created simultaneously. One photon passes through the sample to be tested while the other is directed along a path of adjustable length. The finish line is a so-called Hong-Ou-Mandel interferometer, a beamsplitter that the photons strike obliquely. Individual photons have a fifty-fifty chance of either passing through the beamsplitter or bouncing off it, but when two correlated photons arrive simultaneously, the rules of physics say they both must come out in the same direction.

As a result, this arrangement can detect when the first photon has taken exactly as long to get through the test object as the second photon did to traverse its path. This changes the difficult problem of measuring extraordinarily short intervals of time into the easier one of measuring distances. Through refinements to the design of their interferometer, Migdall and his colleagues can measure simultaneity with sub-femtosecond precision.

The team measured photon transit times through stacks consisting of alternating layers of material with high and low refractive index—the kind of arrangement that makes a light beam seem to bend as it crosses the boundary.

The new experiments verify the theoretical prediction** that photon transit time will vary significantly depending on how you arrange the stack. Migdall and his team found that a photon takes about 20 femtoseconds less to get through a stack of 31 layers, totaling a few microns across, when the stack begins and ends with high refractive index layers rather than the opposite. The shorter time delay is apparently superluminal i.e., shorter than the time needed for light in a vacuum to traverse the same distance. (This is possible because of a loophole in the speed-of-light limit that says that some wave-related phenomena can propagate superluminally if they do not transmit equivalent information faster than the speed of light.)

The team hopes to move on to a more perplexing case. Light striking the boundary between two refractive materials at a sufficiently shallow angle glances off completely as a reflection rather than passing through, but also creates a decaying field known as an evanescent wave on the other side of the boundary. This evanescent wave can reach across a narrow gap and strike up a new light wave in an adjacent medium. Theorists have presented discrepant calculations of how long light takes to traverse such a gap, but Migdall says the new system should be precise enough to measure such transits directly.

Ben Stein | EurekAlert!
Further information:
http://www.nist.gov

More articles from Physics and Astronomy:

nachricht UNH scientists help provide first-ever views of elusive energy explosion
16.11.2018 | University of New Hampshire

nachricht NASA keeps watch over space explosions
16.11.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>