Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum computing with individual atoms

13.06.2002


Researchers at the University of Michigan’s Center for Optical Coherent and Ultrafast Science (FOCUS) and Department of Physics have reported the first demonstration of laser-cooling of individual trapped atoms of different species. This may be an important step in the construction of a future "quantum computer," in which quantum superpositions of inputs are processed simultaneously in a single device. Trapped atoms offer one of the only realistic approaches to precisely controlling the complex quantum systems underlying a quantum computer.



The demonstration is described in the April 2002 issue of Physical Review in an article, "Sympathetic Cooling of Trapped Cd+ Isotopes," by Boris B. Blinov, Louis Deslauriers, Patricia Lee, Martin J. Madsen, Russ Miller, and Christopher Monroe. Partially based on these results, Monroe has proposed a new "Architecture for a Large-Scale Ion-Trap Quantum Computer," with co-authors David Kielpinski (MIT) and David Wineland (National Institute of Standards and Technology), in the June 13 issue of the journal Nature.

Interest in quantum computing has mushroomed in the last decade as its potential for efficiently solving difficult computing tasks, like factoring large numbers and searching large databases, has become evident. Encryption and its obverse, codebreaking, are just two of the applications envisioned for quantum computing if and when it becomes a practical technology. Quantum computation has captured the imagination of the scientific community, recasting some of the most puzzling aspects of quantum physics---once pondered by Einstein, Schroedinger and others---in the context of advancing computer science. "Right now, there’s a lot of black magic involved in understanding what makes a quantum computer tick and how to actually build one," Monroe said. "Many physicists doubt we’ll ever be able to do it, but I’m an optimist. We may not get there for decades, but given enough time and resources---and failing unexpected roadblocks like the failure of quantum mechanics---we should be able to design and build a useable quantum computer. It’s a risky business, but the potential payoff is huge."


In their experiment, the Michigan researchers used electric fields to confine a crystal of exactly two Cd+ atoms of different isotopes. They were able to cool the single 112Cd+ atom to a chilly 0.001 degree Celsius above absolute zero through direct laser cooling of the neighboring 114Cd+ atom. Laser cooling of this "refrigerator atom" removes unwanted motion in the atom crystal without affecting the internal state of the other atom. This is an important step toward scaling a trapped atom computer, where "qubits" of information are stored in the quantum states within the individual atoms.

The architecture proposed in the Nature article describes a "quantum charge-coupled device" (QCCD) consisting of a large number of interconnected atom traps. A combination of radiofrequency (RF) and quasistatic electric fields can be used to change the operating voltages of these traps, confining a few charged atoms in each trap or shuttling them from trap to trap, and the traps can be combined to form complex structures. The cooling of multiple species demonstrated at Michigan is a key component of this broader proposal.

"This is a realistic architecture for quantum computation that is scalable to large numbers of qubits," the authors conclude. "In contrast to other proposals, all quantum state manipulations necessary for our scheme have already been experimentally tested with small numbers of atoms, and the scaling up to large numbers of qubits looks straightforward."


For more information, contact Christopher Monroe, (734) 615-9625, crmonroe@umich.edu. To learn more about FOCUS, visit http://www.umich.edu/~focuspfc/.

The University of Michigan
News Service
412 Maynard
Ann Arbor, MI 48109-1399

EDITORS: Graphics can be seen at http://www.umich.edu/%7Enewsinfo/Releases/2002/Jun02/061202.html. High-resolution versions available on request.

Judy Steeh | EurekAlert
Further information:
http://www.umich.edu/~focuspfc
http://www.umich.edu/%7Enewsinfo/Releases/2002/Jun02/061202.html

More articles from Physics and Astronomy:

nachricht UNLV study unlocks clues to how planets form
13.12.2018 | University of Nevada, Las Vegas

nachricht Unprecedented Views of the Birth of Planets
13.12.2018 | Universität Heidelberg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

UNLV study unlocks clues to how planets form

13.12.2018 | Physics and Astronomy

Live from the ocean research vessel Atlantis

13.12.2018 | Earth Sciences

Stanford researcher deciphers flows that help bacteria feed and organize biofilms

13.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>