Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum computing with individual atoms

13.06.2002


Researchers at the University of Michigan’s Center for Optical Coherent and Ultrafast Science (FOCUS) and Department of Physics have reported the first demonstration of laser-cooling of individual trapped atoms of different species. This may be an important step in the construction of a future "quantum computer," in which quantum superpositions of inputs are processed simultaneously in a single device. Trapped atoms offer one of the only realistic approaches to precisely controlling the complex quantum systems underlying a quantum computer.



The demonstration is described in the April 2002 issue of Physical Review in an article, "Sympathetic Cooling of Trapped Cd+ Isotopes," by Boris B. Blinov, Louis Deslauriers, Patricia Lee, Martin J. Madsen, Russ Miller, and Christopher Monroe. Partially based on these results, Monroe has proposed a new "Architecture for a Large-Scale Ion-Trap Quantum Computer," with co-authors David Kielpinski (MIT) and David Wineland (National Institute of Standards and Technology), in the June 13 issue of the journal Nature.

Interest in quantum computing has mushroomed in the last decade as its potential for efficiently solving difficult computing tasks, like factoring large numbers and searching large databases, has become evident. Encryption and its obverse, codebreaking, are just two of the applications envisioned for quantum computing if and when it becomes a practical technology. Quantum computation has captured the imagination of the scientific community, recasting some of the most puzzling aspects of quantum physics---once pondered by Einstein, Schroedinger and others---in the context of advancing computer science. "Right now, there’s a lot of black magic involved in understanding what makes a quantum computer tick and how to actually build one," Monroe said. "Many physicists doubt we’ll ever be able to do it, but I’m an optimist. We may not get there for decades, but given enough time and resources---and failing unexpected roadblocks like the failure of quantum mechanics---we should be able to design and build a useable quantum computer. It’s a risky business, but the potential payoff is huge."


In their experiment, the Michigan researchers used electric fields to confine a crystal of exactly two Cd+ atoms of different isotopes. They were able to cool the single 112Cd+ atom to a chilly 0.001 degree Celsius above absolute zero through direct laser cooling of the neighboring 114Cd+ atom. Laser cooling of this "refrigerator atom" removes unwanted motion in the atom crystal without affecting the internal state of the other atom. This is an important step toward scaling a trapped atom computer, where "qubits" of information are stored in the quantum states within the individual atoms.

The architecture proposed in the Nature article describes a "quantum charge-coupled device" (QCCD) consisting of a large number of interconnected atom traps. A combination of radiofrequency (RF) and quasistatic electric fields can be used to change the operating voltages of these traps, confining a few charged atoms in each trap or shuttling them from trap to trap, and the traps can be combined to form complex structures. The cooling of multiple species demonstrated at Michigan is a key component of this broader proposal.

"This is a realistic architecture for quantum computation that is scalable to large numbers of qubits," the authors conclude. "In contrast to other proposals, all quantum state manipulations necessary for our scheme have already been experimentally tested with small numbers of atoms, and the scaling up to large numbers of qubits looks straightforward."


For more information, contact Christopher Monroe, (734) 615-9625, crmonroe@umich.edu. To learn more about FOCUS, visit http://www.umich.edu/~focuspfc/.

The University of Michigan
News Service
412 Maynard
Ann Arbor, MI 48109-1399

EDITORS: Graphics can be seen at http://www.umich.edu/%7Enewsinfo/Releases/2002/Jun02/061202.html. High-resolution versions available on request.

Judy Steeh | EurekAlert
Further information:
http://www.umich.edu/~focuspfc
http://www.umich.edu/%7Enewsinfo/Releases/2002/Jun02/061202.html

More articles from Physics and Astronomy:

nachricht Appreciating the classical elegance of time crystals
20.09.2019 | ETH Zurich Department of Physics

nachricht 'Nanochains' could increase battery capacity, cut charging time
20.09.2019 | Purdue University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 'Nanochains' could increase battery capacity, cut charging time

How long the battery of your phone or computer lasts depends on how many lithium ions can be stored in the battery's negative electrode material. If the battery runs out of these ions, it can't generate an electrical current to run a device and ultimately fails.

Materials with a higher lithium ion storage capacity are either too heavy or the wrong shape to replace graphite, the electrode material currently used in...

Im Focus: Stevens team closes in on 'holy grail' of room temperature quantum computing chips

Photons interact on chip-based system with unprecedented efficiency

To process information, photons must interact. However, these tiny packets of light want nothing to do with each other, each passing by without altering the...

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Im Focus: Modular OLED light strips

At the International Symposium on Automotive Lighting 2019 (ISAL) in Darmstadt from September 23 to 25, 2019, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, a provider of research and development services in the field of organic electronics, will present OLED light strips of any length with additional functionalities for the first time at booth no. 37.

Almost everyone is familiar with light strips for interior design. LED strips are available by the metre in DIY stores around the corner and are just as often...

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

 
Latest News

Quality control in immune communication: Chaperones detect immature signaling molecules in the immune system

20.09.2019 | Life Sciences

Moderately Common Plants Show Highest Relative Losses

20.09.2019 | Life Sciences

The Fluid Fingerprint of Hurricanes

20.09.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>