Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Real and virtual pendulums swing as 1 in mixed reality state

12.03.2008
Using a virtual pendulum and its real-world counterpart, scientists at the University of Illinois have created the first mixed reality state in a physical system. Through bidirectional instantaneous coupling, each pendulum “sensed” the other, their motions became correlated, and the two began swinging as one.

“In a mixed reality state there is no clear boundary between the real system and the virtual system,” said U. of I. physicist Alfred Hubler. “The line blurs between what’s real and what isn’t.”

In the experiment, Hubler and graduate student Vadas Gintautas connected a mechanical pendulum to a virtual one that moved under time-tested equations of motion. The researchers sent data about the real pendulum to the virtual one, and sent information about the virtual pendulum to a motor that influenced motion of the real pendulum.

When the lengths of the two pendulums were dissimilar, they remained in a dual reality state of uncorrelated motion and both soon came to rest.

When the lengths of the pendulums were similar, however, they “suddenly noticed each other, synchronized their motions, and danced together indefinitely,” said Hubler, who also is affiliated with the U. of I. Center for Complex Systems Research.

In this mixed reality state, the real pendulum and the virtual pendulum moved together as one.

While mechanical pendulums have been coupled with springs to create correlated motion in the past, this is the first time a mechanical system has been coupled with a virtual system. The resulting mixed reality state was made possible by the computational speed of current computer technology.

“Computers are now fast enough that we can detect the position of the real pendulum, compute the dynamics of the virtual pendulum, and compute appropriate feedback to the real pendulum, all in real time,” said Hubler, who will describe the experiment and discuss potential ramifications at the annual meeting of the American Physical Society, to be held in New Orleans, March 10-14.

From flight simulators to video games, virtual worlds are becoming more and more accurate depictions of the real world. There could come a point, a phase transition, where the boundary between reality and virtual reality disappears, Hubler said. And that could present problems.

For example, no longer able to determine what is real and what is not, an individual might become defensive in the real world because of a threat perceived in a virtual world.

A better understanding of this potential phase transition is needed, Hubler said. “As virtual systems continue to improve and better approximate real ones, even weak couplings – like those between real and virtual pendulums – could induce sudden transitions to mixed reality states.”

James E. Kloeppel | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Physics and Astronomy:

nachricht Extremely close look at electron advances frontiers in particle physics
18.10.2018 | National Science Foundation

nachricht Blue phosphorus -- mapped and measured for the first time
16.10.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

 
Latest News

RUDN chemist tested a new nanocatalyst for obtaining hydrogen

18.10.2018 | Life Sciences

Massive organism is crashing on our watch

18.10.2018 | Earth Sciences

Electrical enhancement: Engineers speed up electrons in semiconductors

18.10.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>