Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Europe launches its first re-supply ship – Jules Verne ATV – to the ISS

10.03.2008
Jules Verne, the first of the European Space Agency’s Automated Transfer Vehicles (ATV), a new series of autonomous spaceships designed to re-supply and re-boost the International Space Station (ISS), was successfully launched into low Earth orbit by an Ariane 5 vehicle this morning. During the coming weeks, it will manoeuvre in order to rendezvous and eventually dock with the ISS to deliver cargo, propellant, water and oxygen to the orbital outpost.

Lift-off occurred at 05:03 CET (01:03 local) from the Guiana Space Centre, Europe’s spaceport in Kourou, French Guiana. This flight required a new version of Europe’s workhorse launcher, the Ariane 5ES, specially adapted to the task of lofting the nearly 20-tonne vehicle – more than twice as heavy as the previous largest Ariane 5 payload – to a low circular orbit inclined at 51.6 degrees relative to the Equator and equipped with an upper stage with re-ignition capabilities.

The unusual launch trajectory required the deployment of two new telemetry tracking stations, one on a ship in the Atlantic Ocean and one on the Azores Islands. The Ariane 5 upper stage performed an initial 8-minute burn over the Atlantic and entered a 45-minute coast phase, flying over Europe and Asia before reigniting for a 40-second circularisation burn over Australia. Separation of Jules Verne ATV occurred at 06:09 CET (02:09 local) and was monitored by a ground station located in New Zealand.

The most complex European spacecraft ever

Jules Verne ATV is now circling the Earth in the same orbital plane as the ISS but at an altitude of only 260 km, compared to 345 km for the Station. The vehicle is under constant monitoring by the dedicated ATV Control Centre in Toulouse, France. Located within the premises of the French Space Agency CNES, the ATV Control Centre will ensure flight control throughout the mission in coordination with the ISS mission control centres in Moscow and Houston. After having demonstrated safety manoeuvres in free flight, the ATV will perform orbital ‘phasing’ manoeuvres in order to rendezvous with the ISS for a first docking slot scheduled for 3 April after the departure of NASA’s Space Shuttle Endeavour.

Named after the famous French 19th century visionary and author, the Jules Verne ATV is the largest and most sophisticated spacecraft ever developed in Europe, combining the functions of an autonomous free-flying platform, a manoeuvrable space vehicle and a space station module. About 10 m high with a diameter of 4.5 m, it weighed 19,357 kg at launch. It incorporates a 45-m3 pressurised module, derived from the Columbus pressure shell, and a Russian-built docking system, similar to those used on Soyuz manned ferries and on the Progress re-supply ship. About three times larger than its Russian counterpart, it can also deliver about three times more cargo.

The ATV is also the very first spacecraft in the world designed to conduct automated docking in full compliance with the very tight safety constraints imposed by human spaceflight operations. It features high accuracy navigation systems and a flight software far more complex than that used on Ariane 5.

Another ESA contribution to ISS co-ownership

Decided by ESA in 1995 in order to pay for its contribution to the operational costs of the ISS, the ATV has been under development since 1998 by an industrial team led by Astrium Space Transportation and comprising more than 30 contractors from 10 European countries.

On this first ATV mission, Jules Verne will deliver 4.6 tonnes of payload to the ISS, including 1 150 kg of dry cargo, 856 kg of propellant for the Russian Zvezda module, 270 kg of drinking water and 21 kg of oxygen. On future ATV missions, the payload capacity will be increased to 7.4 tonnes.

About half of the payload onboard Jules Verne ATV is re-boost propellant, which will be used by its own propulsion system for periodic manoeuvres to increase the altitude of the ISS in order to compensate its natural decay caused by atmospheric drag.

Upon leaving, after four months spent docked to the ISS, Jules Verne ATV will carry away waste from the Station. It will then be de-orbited over the Southern Pacific Ocean and burn up in the atmosphere in a fully controlled manner.

Only the beginning

Beyond Jules Verne, ESA has already contracted industry to produce four more ATVs to be flown through to 2015.

With both ESA’s ATV and Russia’s Progress, the ISS will be able to rely on two independent servicing systems to ensure its operations after the retirement of the US space shuttle in 2010.

The Japanese HTV (H-II Transfer Vehicle) will also soon join the scene. This will be vital to ensure the system's overall robustness and reliability.

“Last month, with the docking of Columbus, Europe got its own flat in the ISS building, with the launch of the first ATV, we now have our own delivery truck” said Daniel Sacotte, ESA’s Director for Human Spaceflight, Microgravity and Exploration. “We have become co-owners of the ISS, now we are about to become fully- fledged partners in running it. With the ATV we will be servicing the ISS by delivering cargo and providing orbital reboost.”

“The launch of Jules Verne by Ariane 5 ES marks an important step on the way to ESA becoming an indispensable ISS partner with the ATV, the heaviest and most complex spacecraft ever built by ESA” said Jean-Jacques Dordain, ESA’s Director General. “This is the result of close cooperation between Member States, European industry, Arianespace, CNES, ESA staff and international partners. But the next steps of Jules Verne’s mission are as important when it comes to attaining the objective of automatic rendezvous and docking with the ISS, controlled from the ATV Control Centre in Toulouse. In meeting that objective, we will have made great strides in consolidating the role of ESA in the future international exploration of the solar system.”

Karina De Castris | alfa
Further information:
http://www.esa.int/esaCP/Pr_15_2008_p_EN.html

More articles from Physics and Astronomy:

nachricht Smallest transistor worldwide switches current with a single atom in solid electrolyte
17.08.2018 | Karlsruher Institut für Technologie (KIT)

nachricht Protecting the power grid: Advanced plasma switch for more efficient transmission
17.08.2018 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>