Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physics breakthrough much ado about 'nothing'

07.03.2008
University of Calgary team enhances understanding of the universe by capturing unique form of void

How do scientists store nothing? It may sound like the beginning of a bad joke, but the answer is causing a stir in the realm of quantum physics after two research teams, including one from the University of Calgary, have independently proven it’s possible to store a special kind of vacuum in a puff of gas and then retrieve it a split second later.

In our everyday life, light is completely gone when we turn it off. In the world of quantum physics, which governs microscopic particles, even the light that is turned off exhibits some noise. This noise brings about uncertainty that can cause trouble when trying to make extremely precise measurements.

Using crystals to manipulate laser light, researchers create a peculiar type of nothingness known as a “squeezed vacuum,” which under certain conditions, exhibits less noise than no light at all. A squeezed vacuum is employed in gravitation wave detection; it is also important in the booming field of quantum information technology, where it is used to carry information and to generate an even more mysterious quantum object, entangled light.

Building on the 2001 breakthrough of Harvard-Smithsonian scientists who slowed light down to a stop, teams of physicists from the U of C and the Tokyo Institute of Technology have independently demonstrated that a squeezed vacuum can be stored for some time in a collection of rubidium atoms and retrieved when needed. In work to be published in the March 7 advanced online edition of the leading physics journal Physical Review Letters, the physicists measured the noise of the retrieved light and found it to remain “squeezed” compared to no light at all.

“Memory for light has been a big challenge in physics for many years and I am very pleased we have been able to bring it one step further,” said Alexander Lvovsky, professor in the Department of Physics and Astronomy, Canada Research Chair and leader of the U of C’s Quantum Information Technology research group. “It is important not only for quantum computers, but may also provide new ways to make unbreakable codes for transmitting sensitive information”.

"I'm very impressed," physicist Alexander Kuzmich of the Georgia Institute of Technology in Atlanta told the American Association for the Advancement of Science’s ScienceNOW news service of the squeezed vacuum discovery. Kuzmich, who was able to store and retrieve a single photon in 2006, said the development could help create new types of quantum networks for ultra-secure information transmission and help spell out the boundary of the quantum realm. "It's a real technical achievement," he said.

Lvovsky’s team is continuing work on light storage and is now investigating the possibility of storing more complex forms of quantum light, such as entangled light, which has a wide range of applications for quantum computing and information exchange.

Grady Semmens | EurekAlert!
Further information:
http://www.ucalgary.ca

More articles from Physics and Astronomy:

nachricht The taming of the light screw
22.03.2019 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Magnetic micro-boats
21.03.2019 | Max-Planck-Institut für Polymerforschung

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Laser processing is a matter for the head – LZH at the Hannover Messe 2019

25.03.2019 | Trade Fair News

A Varied Menu

25.03.2019 | Life Sciences

‘Time Machine’ heralds new era

25.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>