Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ESA develops a smarter way to travel through space

11.06.2002


As scientists demand more from space missions travelling to other worlds and beyond, traditional rocket technologies are beginning to show shortcomings. In response, ESA are helping to develop a new type of rocket engine, known as solar-electric propulsion, or more commonly, an ion engine, that can mark a whole new era of space exploration.


ESA are helping to develop a new type of rocket engine;; known as solar-electric propulsion;; or more commonly;; an ion engine;; that can open the door to a whole new era of space exploration. photo: ESA



Solar-electric propulsion is ESA`s new spacecraft engine. It does not burn fuel as chemical rockets do; instead the technique converts sunlight into electricity via solar panels and uses it to electrically charge heavy gas atoms, which accelerate from the spacecraft at high velocity. This drives the spacecraft forwards. In a chemical rocket, burning the fuel creates gas that is expelled relatively slowly compared to electric thrusters. However, in an ion engine, the gas is ejected at large velocities, which makes it generally much more efficient, so less fuel is required.

Such engines have long been the subject of science fiction; now ESA has helped turn them into science fact. A small ion engine is currently lifting ESA`s telecommunications satellite, Artemis, to its planned orbit around Earth and, early in 2003, SMART-1 will blast off from Kourou, French Guiana. Once in space, this small craft will use an ion engine to reach the Moon.


Ion engines are truly important because their high efficiency makes previously impossible missions achievable. In fact, SMART-1 will test a manoeuvring technique, using its ion engine and the gravitational pull of the Moon, which will be essential for ESA`s BepiColombo mission to Mercury, lifting off in 2012. Giuseppe Racca, project manager for SMART-1, explains, "With chemical propulsion you can only do a fly-by or go into a very elongated orbit around the planet. If you want to achieve a low Mercury orbit and really observe the planet, then you can only do that with electric propulsion."

As well as BepiColombo, solar-electric propulsion will be used for ESA`s Solar Orbiter mission, to be launched at the same time. This probe will use an ion engine to rise out of the plane of the Solar System and study the Sun at high latitudes.

Since they do not need to carry so much fuel, ion engines release room for more scientific instruments. As technology continues to get smaller, the size of instruments decreases and the overall size and mass of the spacecraft decreases, further increasing efficiency. Racca says, "Solar-electric propulsion opens up the way to explore the inner part of the Solar System because you have the Sun to power you."

Further away, however, where the Sun`s light is weaker, a new electricity source, such as a nuclear generator, would be needed. This is the next logical step for the technology, according to Racca. He says, "They could take us to the Kuiper belt and even farther away." The Kuiper belt extends beyond the planet Pluto and is a dream destination for many scientists because it contains comets that have been undisturbed since the formation of the Solar System. Beyond these comets is a mysterious realm of magnetic fields and rarefied gases known as interstellar space that astronomers would love to explore. Solar-electric propulsion would make such a mission possible because an ion engine can run almost constantly, so that eventually it outperforms any chemical rocket on such long flights.

"Electric propulsion as a whole, including solar and nuclear types, will really allow us to open a new era of Solar System exploration," concludes Racca.

Clovis De Matos | alfa
Further information:
http://sci.esa.int/

More articles from Physics and Astronomy:

nachricht Convenient location of a near-threshold proton-emitting resonance in 11B
29.05.2020 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

nachricht A special elemental magic
28.05.2020 | Kyoto University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Black nitrogen: Bayreuth researchers discover new high-pressure material and solve a puzzle of the periodic table

29.05.2020 | Materials Sciences

Argonne researchers create active material out of microscopic spinning particles

29.05.2020 | Materials Sciences

Smart windows that self-illuminate on rainy days

29.05.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>