Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magnetic levitation gives computer users sense of touch

05.03.2008
NSF makes Carnegie Mellon invention available to more researchers

Computers, long used as tools to design and manipulate three-dimensional objects, may soon provide people with a way to sense the texture of those objects or feel how they fit together, thanks to a haptic, or touch-based, interface developed at Carnegie Mellon University.

Unlike most other haptic interfaces that rely on motors and mechanical linkages to provide some sense of touch or force feedback, the device developed by Ralph Hollis, research professor in Carnegie Mellon’s Robotics Institute, uses magnetic levitation and a single moving part to give users a highly realistic experience. Users can perceive textures, feel hard contacts and notice even slight changes in position while using an interface that responds rapidly to movements.

“We believe this device provides the most realistic sense of touch of any haptic interface in the world today,” said Hollis, whose research group built a working version of the device in 1997. With the help of a $300,000 National Science Foundation grant, however, he and his colleagues have improved its performance, enhanced its ergonomics and lowered its cost. The grant also enabled them to build 10 copies, six of which are being distributed to haptic researchers across the U.S. and Canada.

“We have gone from the prototype to a much more advanced system that other researchers can use,” Hollis said. Putting the instrument in the hands of other researchers is critical in a young, developing field such as haptic technology, he emphasized. Though haptic interfaces have uses in engineering design, entertainment, assembly, remote operation of robots, and in medical and dental training, their full potential has yet to be explored. That’s particularly the case for magnetic levitation haptic interfaces because so few have been available for use by researchers, he added.

“This is an affordable device that’s also practical,” said Hollis, who has started a spinoff company to build additional devices. “Now other people can have this technology, and this represents technology transfer in the very real sense.”

Six devices will be delivered to researchers at Harvard, Stanford, Purdue and Cornell, as well as to the universities of Utah and British Columbia. All are members of the Magnetic Levitation Haptic Consortium, an international group dedicated to fostering increased use of this technology.

Hong Tan, associate professor of electrical and computer engineering at Purdue University and a consortium member, studies human perception of fine surface textures — work that requires simulation resolution at the micron level. “This is beyond the capability of most commercially available haptic devices, but the maglev device developed by Dr. Hollis will make it possible for us to continue this research,” she said.

“The field of haptic research and development is expanding rapidly,” said Rob Conway, project manager in Carnegie Mellon’s Center for Technology Transfer. “Carnegie Mellon’s research opens new possibilities by joining the world of haptic feedback with a comfortable magnetic levitation interface. The magnetic levitation decouples the interface device from the mechanical world, eliminating friction, backlash, jump, sticking and other interfering effects, so that the user feels only the artificial environment in complete accuracy down to the micro scale.”

The system eliminates the bulky links, cables and general mechanical complexity of other haptic devices on the market today in favor of a single lightweight moving part that floats on magnetic fields.

At the heart of the maglev haptic interface is a bowl-shaped device called a flotor that is embedded with six coils of wire. Electric current flowing through the coils interacts with powerful permanent magnets underneath, causing the flotor to levitate. A control handle is attached to the flotor.

A user moves the handle much like a computer mouse, but in three dimensions with six degrees of freedom — up/down, side to side, back/forth, yaw, pitch and roll. Optical sensors measure the position and orientation of the flotor, and this information is used to control the position and orientation of a virtual object on the computer display. As this virtual object encounters other virtual surfaces and objects, corresponding signals are transmitted to the flotor’s electrical coils, resulting in haptic feedback to the user. Hollis and his colleagues will demonstrate the new maglev haptic interfaces at the IEEE 16th Symposium on Haptic Interfaces for Virtual Environments and Teleoperator Systems, March 13-14 in Reno, Nevada.

Anne Watzman | EurekAlert!
Further information:
http://www.cmu.edu

More articles from Physics and Astronomy:

nachricht Quantum gas turns supersolid
23.04.2019 | Universität Innsbruck

nachricht Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun
18.04.2019 | University of Warwick

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

Marine Skin dives deeper for better monitoring

23.04.2019 | Information Technology

Geomagnetic jerks finally reproduced and explained

23.04.2019 | Earth Sciences

Overlooked molecular machine in cell nucleus may hold key to treating aggressive leukemia

23.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>