Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers measure field strength and density of ICF implosions

03.03.2008
Scientists have identified for the first time two distinctly different types of electromagnetic configurations in inertial confinement fusion implosions that have substantial effects on implosion dynamics and diagnosis.

In the most recent research, which appears in the Feb. 29 issue of the journal, Science, Ryan Rygg of Lawrence Livermore National Laboratory and colleagues from the Massachusetts Institute of Technology and the University of Rochester used radiography with a pulsed monoenergetic proton source to simultaneously measure field strength and area densities by looking at the energy lost by protons during the implosion.

Inertial confinement fusion (ICF) is a process where nuclear fusion reactions (which release copious amounts of energy) are initiated by heating and compressing a fuel target, typically in the form of a spherical shell containing a mixture of deuterium and tritium. Upon completion of the National Ignition Facility laser, fuel will be compressed a thousand-fold by rapid energy deposition onto the surface of a fuel target.

At the OMEGA laser in Rochester, the team blasted 36 laser beams that deposited 14 kilojoules of energy in a one nano-second pulse into ICF fast-ignition capsules. (A nanosecond is one billionth of a second). To observe the dynamics of the imploding capsules, Rygg radiographed the targets before and during implosion. Radiography typically uses X-rays to view unseen or hard-to-image objects, but radiography using protons is sensitive to different phenomena.

The radiographic images showed the presence of complex, filamentary magnetic fields, which permeate the field of view, while a coherent centrally directed electric field is seen near the capsule shell, which had imploded to half its initial radius.

“By measuring the evolution of this coherent electric field, we could potentially map capsule pressure dynamics throughout the implosion, which would be invaluable in assessing implosion performance,” Rygg said. “The striated fields may provide a snapshot of structures originally produced inside the critical surface at various times during the implosion, which would open the door for evaluating the entire implosion process.”

Ann Stark | EurekAlert!
Further information:
http://www.llnl.gov/PAO

More articles from Physics and Astronomy:

nachricht Spintronics: Researchers show how to make non-magnetic materials magnetic
06.08.2020 | Martin-Luther-Universität Halle-Wittenberg

nachricht Manifestation of quantum distance in flat band materials
05.08.2020 | Institute for Basic Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ScanCut project completed: laser cutting enables more intricate plug connector designs

Scientists at the Fraunhofer Institute for Laser Technology ILT have come up with a striking new addition to contact stamping technologies in the ERDF research project ScanCut. In collaboration with industry partners from North Rhine-Westphalia, the Aachen-based team of researchers developed a hybrid manufacturing process for the laser cutting of thin-walled metal strips. This new process makes it possible to fabricate even the tiniest details of contact parts in an eco-friendly, high-precision and efficient manner.

Plug connectors are tiny and, at first glance, unremarkable – yet modern vehicles would be unable to function without them. Several thousand plug connectors...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Anode material for safe batteries with a long cycle life

06.08.2020 | Power and Electrical Engineering

Turning carbon dioxide into liquid fuel

06.08.2020 | Life Sciences

Tellurium makes the difference

06.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>