Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Waiting for dark matter in a mine, with the world's best detectors

03.03.2008
A half-mile down in an old iron ore mine in Minnesota, incredibly sensitive detectors have been waiting for a particle of dark matter, an invisible substance that may form the skeleton of galaxies, to make itself known.

A consortium of research scientists, including Stanford physicist Blas Cabrera, anticipated the detection of a predicted-but-undiscovered dark particle known as a weakly interacting massive particle, or WIMP. The hope was that several WIMPs would travel through space and a half-mile of Earth to plunk themselves into the nuclei of germanium atoms in the detectors, each collision creating a vibration and a tiny puff of heat that would signal the WIMP's existence.

WIMPs are leading candidates for dark matter, the unseen stuff that accounts for 85 percent of the entire mass of the universe. Billions of WIMPs may be passing unnoticed through the bodies of humans every second.

The Cryogenic Dark Matter Search was somewhat like waiting for a phone call from the early moments of the universe, when dark matter was formed. But in this case, the phone never rang. The detectors in the clean room at the bottom of the mine, cooled within a whisper of absolute zero, recorded no WIMPS. Scientists call that a "null result," but it is still valuable, Cabrera said.

By building the world's most sensitive and accurate WIMP detectors—a feat comparable to building the best telescope to search the skies—the researchers can now relay the word to other scientists that detectors must be built bigger if they are to have a fighting chance of finding the elusive WIMP.

So the Cryogenic Dark Matter Search, which started out in an underground tunnel at Stanford before moving to the Soudan mine in Minnesota, will next move to a deeper site at Snolab in Canada. The detectors will grow from 3.7 kilos of germanium to 25 kilos.

With a larger detector, as with a wider telescope, "You will be able to see things you've never been able to see before," Cabrera said.

Institutions participating in the Cryogenic Dark Matter Search, in addition to Stanford, are Case Western Reserve University, Fermi National Accelerator Laboratory, Lawrence Berkeley National Laboratory, Massachusetts Institute of Technology, National Institute of Standards and Technology, Princeton University, Queens University, Santa Clara University, Syracuse University, UC-Berkeley, UC-Santa Barbara, University of Colorado at Denver, University of Florida and University of Minnesota.

Blas Cabrera | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Physics and Astronomy:

nachricht UNLV study unlocks clues to how planets form
13.12.2018 | University of Nevada, Las Vegas

nachricht Unprecedented Views of the Birth of Planets
13.12.2018 | Universität Heidelberg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Magic number colloidal clusters

13.12.2018 | Life Sciences

UNLV study unlocks clues to how planets form

13.12.2018 | Physics and Astronomy

Live from the ocean research vessel Atlantis

13.12.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>