Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jekyll-Hyde neutron star discovered by researchers

25.02.2008
NASA and McGill scientists find star which morphs from pulsar to magnetar

Like something out of a Robert Louis Stevenson novel, researchers at NASA and McGill University discovered an otherwise normal pulsar which violently transformed itself temporarily into a magnetar, a stellar metamorphosis never observed before.

Powerful X-ray bursts from the pulsar in the Kes 75 supernova remnant were discovered by former McGill PhD Dr. Fotis Gavrill, currently assigned to NASA’s Goddard Space Flight Center in Greenbelt, Maryland, in collaboration with Dr. Victoria Kaspi, leader of the McGill University Pulsar Group, her graduate student Maggie Livingstone, and very recent McGill PhD, Dr. Majorie Gonzalez, now of the University of British Columbia. Their results were published February 21 in the journal Science.

Pulsars and magnetars belong to the same class of ultradense, small stellar objects called neutron stars, left behind after massive stars die and explode as supernovae. Pulsars, by far the most common type, spin extremely rapidly and emit powerful bursts of radio waves. These waves are so regular that, when they were first detected in the 1960’s, researchers considered the possibility that they were signals from an extraterrestrial civilization. By contrast, magnetars are slowly rotating neutron stars which derive their energy from incredibly powerful magnetic fields, the strongest known in the universe. There are over 1800 known pulsars in our galaxy alone, but magnetars are much less common, said the researchers.

“Magnetars are actually very exotic objects,” said Dr. Kaspi, McGill’s Lorne Trottier Chair in Astrophysics and Cosmology and Canada Research Chair in Observational Astrophysics. “Their existence has only been established in the last 10 years, and we know of only a handful in the whole galaxy. They have dramatic X-ray and gamma-ray bursts and can emit huge flares, sometimes brighter than all other cosmic X-ray sources in the sky combined.”

This discovery, based on data from NASA’s Rossi X-ray Timing Explorer (RXTE) and Chandra X-ray Observatory satellites, is the long-sought-after missing link between the two types of neutron star, said the researchers. To date, the evolutionary relationship between pulsars and magnetars has been poorly understood. It was not clear if magnetars are simply a rare class of pulsars, or if some or all pulsars go through a magnetar phase as a normal part of their life cycles.

“Researchers have long been looking for transition objects,” explained Maggie Livingstone. “In particular we’ve kept our eyes on pulsars with high magnetic fields.”

“This source could be evolving into a magnetar,” added Dr. Kaspi. “Or it could just show occasional magnetar-like properties, we just don’t know yet. We’re very anxious to find out.”

Mark Shainblum | EurekAlert!
Further information:
http://www.mcgill.ca

More articles from Physics and Astronomy:

nachricht Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun
18.04.2019 | University of Warwick

nachricht In vivo super-resolution photoacoustic computed tomography by localization of single dyed droplets
18.04.2019 | Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>