Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Sun will vaporise the Earth unless we can change our orbit

22.02.2008
New calculations by University of Sussex astronomers predict that the Earth will be swallowed up by the Sun in about 7.6 billion years unless the Earth’s orbit can be altered.

Dr Robert Smith, Emeritus Reader in Astronomy, said his team previously calculated that the Earth would escape ultimate destruction, although be battered and burnt to a cinder. But this did not take into account the effect of the drag caused by the outer atmosphere of the dying Sun.

He says: "We showed previously that, as the Sun expanded, it would lose mass in the form of a strong wind, much more powerful than the current solar wind. This would reduce the gravitational pull of the Sun on the Earth, allowing the Earth's orbit to move outwards, ahead of the expanding Sun.

“If that were the only effect the Earth would indeed escape final destruction. However, the tenuous outer atmosphere of the Sun extends a long way beyond its visible surface, and it turns out the Earth would actually be orbiting within these very low density outer layers. The drag caused by this low-density gas is enough to cause the Earth to drift inwards, and finally to be captured and vaporised by the Sun.”

The new paper was written in collaboration with Dr Klaus-Peter Schroeder, previously at Sussex, who is now in the Astronomy Department of the University of Guanajuato in Mexico.

Life on Earth will have disappeared long before 7.6 billion years, however. Scientists have shown that the Sun's slow expansion will cause the temperature at the surface of the Earth to rise. Oceans will evaporate, and the atmosphere will become laden with water vapour, which (like carbon dioxide) is a very effective greenhouse gas. Eventually, the oceans will boil dry and the water vapour will escape into space. In a billion years from now the Earth will be a very hot, dry and uninhabitable ball.

Can anything be done to prevent this fate? Professor Smith points to a remarkable scheme proposed by a team at Santa Cruz University, who suggest harnessing the gravitational effects of a close passage by a large asteroid to "nudge" the Earth's orbit gradually outwards away from the encroaching Sun. A suitable passage every 6000 years or so would be enough to keep the Earth out of trouble and allow life to survive for at least 5 billion years, and possibly even to survive the Sun's red giant phase.

“This sounds like science fiction,” says Professor Smith. “But it seems that the energy requirements are just about possible and the technology could be developed over the next few centuries.” However, it is a high-risk strategy - a slight miscalculation, and the asteroid could actually hit the Earth, with catastrophic consequences. “A safer solution may be to build a fleet of interplanetary 'life rafts' that could manoeuvre themselves always out of reach of the Sun, but close enough to use its energy,” he adds.

Jacqui Bealing | alfa
Further information:
http://www.sussex.ac.uk
http://www.sussex.ac.uk/press_office/media/media191.shtml

More articles from Physics and Astronomy:

nachricht Researchers discover link between magnetic field strength and temperature
21.08.2018 | American Institute of Physics

nachricht Smallest transistor worldwide switches current with a single atom in solid electrolyte
17.08.2018 | Karlsruher Institut für Technologie (KIT)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Air pollution leads to cardiovascular diseases

21.08.2018 | Ecology, The Environment and Conservation

Researchers target protein that protects bacteria's DNA 'recipes'

21.08.2018 | Life Sciences

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>