Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

After successfully delivering Columbus, Atlantis is back on Earth

21.02.2008
NASA’s space shuttle Atlantis, which successfully delivered ESA’s Columbus laboratory to the International Space Station, has safely returned to Earth with its crew of seven. Landing was at 14:07 UTC (15:07 CET) on 20 February at Kennedy Space Center, Florida.

On this STS-122 mission, the shuttle spent nearly 13 days in space, including 9 days docked to the Station to conduct a major ISS assembly task: delivery of Europe’s first permanent manned outpost in orbit. The 7-m long 12.8-tonne Columbus module, a state-of-the-art multidisciplinary laboratory, was attached to the Harmony (Node 2) module on 11 February.

Once leak checks and initial electrical, fluid and data connections were completed, the module’s hatch was opened on 12 February, marking Europe’s new status as a full partner and co-owner of the ISS. Outfitting work inside Columbus began only a few hours later, as the laboratory entered its commissioning phase, which was commanded and controlled by the Columbus Control Centre (Col-CC) located in Oberpfaffenhoffen near Munich, Germany.

Two ESA astronauts, Hans Schlegel of Germany and Léopold Eyharts of France, were ferried to the Station by Atlantis and both contributed directly to this success. As a member of the STS-122 crew, Hans Schlegel performed one of the three spacewalks during the mission with fellow astronaut Rex Walheim of NASA. He also coordinated the other two spacewalks, supporting the Columbus module’s transfer from the shuttle payload bay to the ISS, plus the transfer of two payload suites, SOLAR and EuTEF, to external platforms on the Columbus module. Hans Schlegel returned to Earth with Atlantis.

After formal crew responsibility hand-over tasks following the docking of Atlantis with the Station, Léopold Eyharts became part of the resident ISS crew (Expedition 16), trading places with NASA astronaut Dan Tani. He provided support for Columbus docking from inside the Harmony module, activating the motorised bolts to secure the junction, and assisted the third spacewalk by operating the station’s robotic arm.

Unlike Schlegel, Eyharts remained on the ISS when Atlantis undocked two days ago. He will spend the next month in space to complete the Columbus module’s commissioning and to perform a series of experiments, both in the laboratory and in the other science facilities already operating in the Station. Léopold Eyharts is scheduled to return to earth with the next shuttle ISS mission (Endeavour/STS-123), at the end of March.

ESA builds up its contribution to the ISS

With the addition of Columbus, the pressurised volume of the Space Station was increased by a mere 15%, but its science capacity was nearly doubled. Two modules of the Japanese laboratory will be added in March and May, and a Russian Multi-Purpose Laboratory Module (MLM) will follow in 2011.

A new era is also beginning for ESA’s activities onboard. As a fully-fledged partner of the ISS programme, ESA will now not only enjoy the benefits of Columbus but will also have to contribute to ISS operations. This will be achieved through the launch of unmanned servicing missions carried out by the Automated Transfer Vehicle, designed to deliver speares, scientific experiments, crew support equipment (food, clothing), fluids and propellant and to perform reboost to compensate for orbital decay of the ISS. The first ATV, Jules Verne, will be launched by an Ariane 5 on 8 March.

But ESA will also benefit from the Station by conducting experiments within its many science facilities, and by regularly sending European astronauts to perform long-duration stays onboard as members of the resident crew. Two ESA astronauts are already training for such missions: Frank de Winne of Belgium who will fly as a member of the ISS Expedition 19 crew in 2009; and André Kuipers of the Netherlands who will be his backup. More will follow.

Further European-built ISS elements are still under preparation to be launched to the ISS within the decade, such as the Material Science Laboratory (MSL), the Muscle Atrophy Resistive Exercise System (MARES), the European Robotic Arm (ERA), the Node 3 module and the Cupola observation deck.

As Columbus is coming to life, so too is the network of nine User Support and Operations Centres (USOCs), which has been set up all over Europe to facilitate the interface between researchers and the science payloads onboard, and to allow investigators to control their experiments and receive real-time data on their results, through an interconnection provided via the Columbus Control Centre.

Commissioning of the European laboratory has proceeded well and faster than planned. The two external payloads SOLAR and EuTEF have been deployed outside Columbus and already provide data. WAICO, the first experiment to be conducted inside the lab, will start this week inside Biolab. The Geoflow experiment will start up in early March inside the Fluid Science Laboratory.

Over the coming weeks and months, the USOC network’s activity will increase dramatically as the science equipment and experiments already onboard Columbus are commissioned and switched to operational status, and as more science payloads are delivered to the module by the upcoming logistics missions.

Columbus was designed to support some 500 experiments per year for ten years, in cell and plant biology, astrobiology, human physiology, fluid and material sciences, fundamental physics, astronomy, remote sensing and technology. For the European science community and industrial R&D, a new era of research has just begun.

ESA Media Relations Office | alfa
Further information:
http://www.esa.int/SPECIALS/Columbus/SEMXOTVHJCF_0.html

More articles from Physics and Astronomy:

nachricht Immortal quantum particles: the cycle of decay and rebirth
14.06.2019 | Technische Universität München

nachricht Small currents for big gains in spintronics
13.06.2019 | University of Tokyo

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

Im Focus: Cost-effective and individualized advanced electronic packaging in small batches now available

Fraunhofer IZM is joining the EUROPRACTICE IC Service platform. Together, the partners are making fan-out wafer level packaging (FOWLP) for electronic devices available and affordable even in small batches – and thus of interest to research institutes, universities, and SMEs. Costs can be significantly reduced by up to ten customers implementing individual fan-out wafer level packaging for their ICs or other components on a multi-project wafer. The target group includes any organization that does not produce in large quantities, but requires prototypes.

Research always means trying things out and daring to do new things. Research institutes, universities, and SMEs do not produce in large batches, but rather...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Concert of magnetic moments

14.06.2019 | Information Technology

Materials informatics reveals new class of super-hard alloys

14.06.2019 | Materials Sciences

New imaging modality targets cholesterol in arterial plaque

14.06.2019 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>