Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT physicist to describe strange world of quarks, gluons

18.02.2008
One of the great theoretical challenges facing physicists is understanding how the tiniest elementary particles give rise to most of the mass in the visible universe.

Tiny particles called quarks and gluons are the building blocks for larger particles such as protons and neutrons, which in turn form atoms. However, quarks and gluons behave very differently than those larger particles, making them more difficult to study.

John Negele, the W.A. Coolidge Professor of Physics at MIT, will talk about the theory that governs interactions of quarks and gluons, known as quantum chromodynamics (QCD), during a Feb. 17 presentation to the American Association for the Advancement of Science annual meeting in Boston.

Negele will describe how scientists are using supercomputers and a concept called lattice field theory to figure out the behavior of quarks and gluons, the smallest known particles.

“The quest to understand the fundamental building blocks of nature has led to the exploration of successive layers of worlds within worlds,” says Negele, who also holds an appointment in MIT’s Laboratory for Nuclear Science.

Molecules are built from atoms, atoms from electrons and nuclei, and nuclei from protons and neutrons. Those interactions are well understood. The next step in the process is to unravel the interactions of quarks and gluons, which are strikingly different from those of larger particles and require a different approach to study them.

Several factors make interactions between quarks and gluons more complicated to study. For one, quarks are confined within larger particles, so they cannot be separated and studied in isolation. Also, the force between two quarks becomes larger as they move farther apart, whereas the force between a nucleus and an electron, or two nucleons in a nucleus, grows weaker as their separation increases.

These differences can be explained by the property of asymptotic freedom, for which David Gross, David Politzer and MIT’s Frank Wilczek, the Herman Feshbach (1942) Professor of Physics, shared the 2004 Nobel Prize. This property describes how the force generated by the exchange of gluons becomes weaker as the quarks come closer together and grows larger as the quarks are separated. As a consequence, none of the analytical techniques used to successfully solve atomic and nuclear physics problems can be used to analyze quarks and gluons.

Instead, physicists use lattice field theory to study QCD interactions. Using large supercomputers, researchers can analyze QCD by representing space-time by a four-dimensional lattice of discrete points, like a crystal.

The calculations are being performed by computers specially built for this purpose, such as the 360-teraflop BlueGene/L at Lawrence Livermore National Laboratory.

In his talk, Negele will describe the basic ideas of how QCD is solved using a space-time lattice and will show selected results of the calculations of fundamental properties of protons, neutrons and other strongly interacting particles.

Elizabeth Thomson | EurekAlert!
Further information:
http://www.mit.edu

More articles from Physics and Astronomy:

nachricht Magnetic tuning at the nanoscale
13.11.2019 | Helmholtz-Zentrum Dresden-Rossendorf

nachricht At future Mars landing spot, scientists spy mineral that could preserve signs of past life
13.11.2019 | Brown University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

Im Focus: Distorted Atoms

In two experiments performed at the free-electron laser FLASH in Hamburg a cooperation led by physicists from the Heidelberg Max Planck Institute for Nuclear physics (MPIK) demonstrated strongly-driven nonlinear interaction of ultrashort extreme-ultraviolet (XUV) laser pulses with atoms and ions. The powerful excitation of an electron pair in helium was found to compete with the ultrafast decay, which temporarily may even lead to population inversion. Resonant transitions in doubly charged neon ions were shifted in energy, and observed by XUV-XUV pump-probe transient absorption spectroscopy.

An international team led by physicists from the MPIK reports on new results for efficient two-electron excitations in helium driven by strong and ultrashort...

Im Focus: A Memory Effect at Single-Atom Level

An international research group has observed new quantum properties on an artificial giant atom and has now published its results in the high-ranking journal Nature Physics. The quantum system under investigation apparently has a memory - a new finding that could be used to build a quantum computer.

The research group, consisting of German, Swedish and Indian scientists, has investigated an artificial quantum system and found new properties.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

Smart lasers open up new applications and are the “tool of choice” in digitalization

30.10.2019 | Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

 
Latest News

AI-driven single blood cell classification: New method to support physicians in leukemia diagnostics

13.11.2019 | Life Sciences

Efficient engine production with the latest generation of the LZH IBK

13.11.2019 | Machine Engineering

Small RNAs link immune system and brain cells

13.11.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>